Preview

The Scientific Notes of the Pavlov University

Advanced search

The level of neurotrophins in the brain of mice with urokinase gene knockout in experimental melanoma and comorbid pathology

https://doi.org/10.24884/1607-4181-2021-28-3-9-16

Abstract

The objective was to evaluate the levels of neurotrophins in the brain of mice with urokinase (uPA) gene knockout, carriers of B16/F10 melanoma developing in presence of comorbid pathology – chronic neurogenic pain (CNP).

Methods and materials. The study included female mice of two strains: С57ВL/6 (n=40) and C57BL/6-PlautmI.IBug-ThisPlau6FDhu/GFDhu (n=28). In the main groups, CNP was created by the bilateral sciatic nerve ligation, with В16/F10 melanoma transplanted under the skin of the back 2 weeks after. The comparison groups included sham operated animals with melanoma transplantation, the control groups – sham operated animals and animals with CNP. Mice were decapitated on day 21 of the tumor growth, and the brain levels of brain neurotrophic factor (BDNF); nerve growth factor (NGF), neurotrophins 3 (NT3) and 4 (NT4) were studied by ELISA.

Results. The brain of mice with uPA gene knockout demonstrated higher levels of NT3 (by 1.3 times (p=0.0146)), NT4 (by 2.6 times) and NGF-β (by 1.9 times (p=0.0021)) and lower BDNF (by 1.7 times (p=0.0203)), compared to mice without knockout. Cerebral reduction of NGF-β was a nonspecific brain response to CNP and neoplastic growth in female mice, enhanced in the combination of the pathological factors. Greater stimulation of subcutaneous melanoma growth in female mice with uPA knockout under the influence of CNP combined with a 2-fold decrease in levels of NT3 and BDNF in the brain, along with 2.2 times higher cerebral levels of NGF-β, compared to female mice without knockout.

Conclusions. In female mice with uPA gene knockout compared to mice without knockout, we revealed background differences and other dynamics of neurotrophin levels in the brain at melanoma growth both alone and in combination with comorbid pathology – CNP.

About the Authors

E. M. Frantsiyants
National Medical Research Centre for Oncology
Russian Federation

Frantsiyants Elena M., Dr. of Sci. (Biol.), Professor, Deputy General Director for Science

63, 14 liniya str., Rostov-on-Don, 344037


Competing Interests:

Authors declare no conflict of interest



I. V. Kaplieva
National Medical Research Centre for Oncology
Russian Federation

Kaplieva Irina V., Dr. of Sci. (Med.), Head of Laboratory of Malignant Tumor Pathogenesis Study

63, 14 liniya str., Rostov-on-Don, 344037


Competing Interests:

Authors declare no conflict of interest



V. A. Bandovkina
National Medical Research Centre for Oncology
Russian Federation

Bandovkina Valerija A., Dr. of Sci. (Biol.), Senior Research Fellow at Laboratory of Malignant Tumor Pathogenesis Study

63, 14 liniya str., Rostov-on-Don, 344037


Competing Interests:

Authors declare no conflict of interest



E. I. Surikova
National Medical Research Centre for Oncology
Russian Federation

Surikova Ekaterina I., Cand. of Sci. (Biol.), Senior Research Fellow at Laboratory of Malignant Tumor Pathogenesis Study

63, 14 liniya str., Rostov-on-Don, 344037


Competing Interests:

Authors declare no conflict of interest



I. V. Neskubina
National Medical Research Centre for Oncology
Russian Federation

Neskubina Irina V., Cand. of Sci. (Biol.), Senior Research Fellow at Laboratory of Malignant Tumor Pathogenesis Study

63, 14 liniya str., Rostov-on-Don, 344037


Competing Interests:

Authors declare no conflict of interest



N. D. Cheryarina
National Medical Research Centre for Oncology
Russian Federation

Cheryarina Natalia D., Doctor-Laboratory Assistant at Laboratory of Malignant Tumor Pathogenesis Study

63, 14 liniya str., Rostov-on-Don, 344037


Competing Interests:

Authors declare no conflict of interest



L. K. Trepitaki
National Medical Research Centre for Oncology
Russian Federation

Trepitaki Lidija K., Research Fellow at Laboratory of Malignant Tumor Pathogenesis Study

63, 14 liniya str., Rostov-on-Don, 344037


Competing Interests:

Authors declare no conflict of interest



N. S. Lesovaya
National Medical Research Centre for Oncology
Russian Federation

Lesovaya Natalia S., Junior Research Fellow at Laboratory of Malignant Tumor Pathogenesis Study

63, 14 liniya str., Rostov-on-Don, 344037


Competing Interests:

Authors declare no conflict of interest



S. G. Vlasov
National Medical Research Centre for Oncology
Russian Federation

Vlasov Stanislav G., Postgraduate Student

63, 14 liniya str., Rostov-on-Don, 344037


Competing Interests:

Authors declare no conflict of interest



R. G. Luganskaya
National Medical Research Centre for Oncology
Russian Federation

Luganskaya Roza G., Cand. of Sci. (Med.), Surgeon of the Department of skin, bone, soft tissue and breast tumors

63, 14 liniya str., Rostov-on-Don, 344037


Competing Interests:

Authors declare no conflict of interest



E. S. Bosenko
National Medical Research Centre for Oncology
Russian Federation

Bosenko Ekaterina S., Cand. of Sci. (Med.), Surgeon of the Department of skin, bone, soft tissue and breast tumors

63, 14 liniya str., Rostov-on-Don, 344037


Competing Interests:

Authors declare no conflict of interest



References

1. Biagioni A., Laurenzana A., Chillà A., Del Rosso M., Andreucci E., Poteti M., Bani D., Guasti D., Fibbi G., Margheri F. uPAR Knockout Results in a Deep Glycolytic and OXPHOS Reprogramming in Melanoma and Colon Carcinoma Cell Lines // Cells. 2020;9(2):308. Doi: 10.3390/cells9020308.

2. Margheri F., Luciani C., Taddei M. L., Giannoni E., Laurenzana A., Biagioni A., Chillà A., Chiarugi P., Fibbi G., Del Rosso M. The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style //. Oncotarget. 2014;(5):1538–1553. Doi: 10.18632/oncotarget.1754.

3. Laurenzana A., Chillà A., Luciani C., Peppicelli S., Biagioni A., Bianchini F., Tenedini E., Torre E., Mocali A., Calorini L., Margheri F., Fibbi G., Del Rosso M. uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells // Int J Cancer. 2017;141(6):1190–1200. Doi: 10.1002/ijc.30817.

4. Bothwell M. Recent advances in understanding context- dependent mechanisms controlling neurotrophin signaling and function // F1000Res. 2019;(8):1000. Doi: 10.12688/f1000research.19174.1.

5. Houlton J., Abumaria N., Hinkley S. F. R., Clarkson A. N. Therapeutic Potential of Neurotrophins for Repair After Brain Injury: A Helping Hand From Biomaterials // Front Neurosci. 2019;(13):790. Doi: 10.3389/fnins.2019.00790.

6. Zanin J. P., Unsain N., Anastasia A. Growth factors and hormones pro-peptides: the unexpected adventures of the BDNF prodomain // J. Neurochem. 2017;141(3):330–340. Doi: 10.1111/jnc.13993.

7. Tsai Y. F., Tseng L. M., Hsu C. Y., Yang M. H., Chiu J. H., Shyr Y. M. Brain-derived neurotrophic factor (BDNF)-TrKB signaling modulates cancer-endothelial cells interaction and affects the outcomes of triple negative breast cancer // PLoS One. 2017;12(6):E0178173. Doi: 10.1371/journal.pone.0178173.

8. Yu X., Liu Z., Hou R., Nie Y., Chen R. Nerve growth factor and its receptors on onset and diagnosis of ovarian cancer // Oncol Lett. 2017;14(3):2864–2868. Doi: 10.3892/ol.2017.6527.

9. St John Smith E. Advances in understanding nociception and neuropathic pain // J Neurol. 2018;265(2):231–238. Doi: 10.1007/s00415-017-8641-6.

10. Burma N. E., Leduc-Pessah H., Fan C. Y., Trang T. Animal models of chronic pain: Advances and challenges for clinical translation. // Neurosci Res. 2017;95(6):1242–1256. Doi: 10.1002/jnr.23768.

11. Kit O. I., Frantsiyants E. M., Kaplieva I. V., Tripitaki L. K., Evstratova O. F. A method for reproduction of metastases in the liver // Bulletin of experimental Biology and Medicine. 2014;157(6):773–775. (In Russ.).

12. Kit O. I., Frantsiyants E. M., Dimitriadi S. N., Shevchenko A. N., Kaplieva I. V., Tripitaki L. K. Neoangiogenesis and fibrinolytic system biomarkers expression in the dynamics of experimental kidney ischemia in rats // Experimental & Clinical Urology. 2015;(1):20–23. (In Russ.).

13. Zhukova G. V., Shikhliarova A. I., Sagakyants A. B., Protasova T. P. About expanding options for using BALB/C NUDE mice for experimental study of human malignant tumors in vivo // South Russian Journal of Cancer. 2020;1(2):28–35. Doi: 10.37748/2687-0533-2020-1-2-4. (In Russ.).

14. Kit O. I., Frantsiyants E. M., Kotieva I. M. et al. Dynamics of the tissue system of plasminogen regulators in cutaneous melanoma with chronic pain in female mice // Translyatsionnaya meditsina. 2018;5(2):38–46. (In Russ.). Doi: 10.18705/2311-4495-2018-5-2-38-46.

15. Han Y. H., Kim K. H., Abdi S., Kim T. K. Stem cell therapy in pain medicine // Korean J Pain. 2019;32(4):245– 255. Doi: 10.3344/kjp.2019.32.4.245.

16. Frantsiyants E. M., Kaplieva I. V., Surikova E. I., Neskubina I. V., Bandovkina V. A., Trepitaki L. K., Lesovaya N. S., Cheryarina N. D., Pogorelova Y. A., Nemashkalova L. A. Effect of urokinase gene-knockout on growth of melanoma in experiment // Sibirskiy nauchny meditsinskiy zhurnal. 2019;39(4):62–70. (In Russ). Doi: 10.15372/SSMJ20190408.

17. Jiang H., Chen S., Li C., Lu N., Yue Y., Yin Y., Zhang Y., Zhi X., Zhang D., Yuan Y. The serum protein levels of the tPA-BDNF pathway are implicated in depression and antidepressant treatment // Transl Psychiatry. 2017;7(4):E1079. Doi: 10.1038/tp.2017.43.

18. Klein A. B., Williamson R., Santini M. A., Clemmensen C., Ettrup A., Rios M., Knudsen G. M., Aznar S. Blood BDNF concentrations reflect brain-tissue BDNF levels across species // Int J Neuropsychopharmacol. 2011;14(3):347–353. Doi: 10.1017/S1461145710000738.

19. Levi-Montalcini R. The nerve growth factor 35 years later // Science. 1987;237(4819):1154–1162. Doi: 10.1126/science.3306916.

20. Skaper S. D. Nerve growth factor: a neuroimmune crosstalk mediator for all seasons // Immunology. 2017; 151(1):1–15. Doi: 10.1111/imm.12717.

21. Proenca C. C., Song M., Lee F. S. Differential effects of BDNF and neurotrophin 4 (NT4) on endocytic sorting of TrkB receptors // J Neurochem. 2016;138(3):397–406. Doi: 10.1111/jnc.13676.

22. Vilar M., Mira H. Regulation of Neurogenesis by Neurotrophins during Adulthood: Expected and Unexpected Roles // Front Neurosci. 2016;(10):26. Doi: 10.3389/fnins.2016.00026.

23. Rozanska O., Uruska A., Zozulinska-Ziolkiewicz D. Brain-Derived Neurotrophic Factor and Diabetes // Int J Mol Sci. 2020 Jan 28;21(3):841. Doi: 10.3390/ijms21030841.

24. Ding S., Zhu T., Tian Y., Xu P., Chen Z., Huang X., Zhang X. Role of Brain-Derived Neurotrophic Factor in Endometriosis Pain // Reprod Sci. 2018;25(7):1045–1057. Doi: 10.1177/1933719117732161.

25. Donnerer J., Liebmann I. Upregulation of BDNF and Interleukin-1ß in rat spinal cord following noxious hind paw stimulation // Neurosci Lett. 2018;(665):152–155. Doi: 10.1016/j.neulet.2017.12.008.

26. Lima Giacobbo B., Doorduin J., Klein H. C., Dierckx R. A. J. O., Bromberg E., de Vries E. F. J. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation // Mol Neurobiol. 2019;56(5):3295–3312. Doi: 10.1007/s12035-018-1283-6.


Supplementary files

Review

For citations:


Frantsiyants E.M., Kaplieva I.V., Bandovkina V.A., Surikova E.I., Neskubina I.V., Cheryarina N.D., Trepitaki L.K., Lesovaya N.S., Vlasov S.G., Luganskaya R.G., Bosenko E.S. The level of neurotrophins in the brain of mice with urokinase gene knockout in experimental melanoma and comorbid pathology. The Scientific Notes of the Pavlov University. 2021;28(3):9-16. (In Russ.) https://doi.org/10.24884/1607-4181-2021-28-3-9-16

Views: 339


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-4181 (Print)
ISSN 2541-8807 (Online)