Микробиота и онкологические заболевания (обзор литературы)
https://doi.org/10.24884/1607-4181-2020-27-4-14-27
Аннотация
Представлены современные данные о вкладе микробиоты человека в развитие неопластических заболеваний, механизмы клеточной трансформации и эффективность химиотерапии. Описаны методы изучения микробиоты при опухолевых заболеваниях, перспективы создания неинвазивных методов диагностики неоплазий.
Об авторах
М. Ф. ВечерковскаяРоссия
Вечерковская Мария Фёдоровна - кандидат медицинских наук, доцент кафедры микробиологии и вирусологии.
Санкт-Петербург.
3229-0798
Конфликт интересов:
Авторы заявили об отсутствии потенциального конфликта интересов.
Г. В. Тец
Россия
Тец Георгий Викторович - кандидат медицинских наук, ведущий научный сотрудник лаборатории иммунологии Научно-исследовательского центра.
Санкт-Петербург.
6952-3014
Конфликт интересов:
Авторы заявили об отсутствии потенциального конфликта интересов.
В. В. Тец
Россия
Тец Виктор Вениаминович - доктор медицинских наук, академик РАЕН, профессор, зав. кафедрой микробиологии и вирусологии.
Санкт-Петербург.
4014-5771
Конфликт интересов:
Авторы заявили об отсутствии потенциального конфликта интересов.
Список литературы
1. Tetz G., Tetz V. Introducing the sporobiota and sporobiome. Gut Pathog // BioMed. Central. -2017. - Vol. 9, № 1. - P 1-6. Doi: 10.1186/s13099-017-0187-8.
2. Ogilvie L. A, Jones B. V. The human gut virome. -a multifaceted majority // Front Microbiol. -2015. - Vol. 6, № 368. - P. 1753-1712. Doi: 10.3389/fmicb.2015.00918.
3. Tetz G. V., Ruggles K. V., Zhou H. et al. Bacteriophages as potential new mammalian pathogens // Scientific Reports. Springer US. - 2017. - Vol. 7, № 1. - P. 1-9. Doi: 10.1038/s41598-017-07278-6.
4. Nash A. K., Auchtung T. A., Wong M. C. et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome // Microbiome. - 2017. - Vol. 5, № 1. - P. 1-13. Doi: 10.1186/s40168-017-0373-4.
5. Byrd A. L., Belkaid Y., Segre J. A. The human skin microbiome. Nature Publishing Group // Nature Publishing Group. - 2018. - Vol. 16, № 3. - P 143-155. Doi: 10.1038/nrmicro.2017.157.
6. Beck J. M., Young V. B. Research GHT. 2012. The microbiome of the lung // Elsevier. - 2012. - Vol. 160, № 4. -P. 258-266. Doi: 10.1016/j.trsl.2012.02.005.
7. Francis P., Tangney M., Reid G. et al. Microbiota of Human Breast Tissue. - 2014. - Vol. 80, № 10. - P. 3007-3014. Doi: 10.1128/AEM.00242-14.
8. Castillo E., Meier R., Koestler D. C. et al. The Microbiomes of Pancreatic Tissue in Pancreatic Cancer and Non-Can-cer Subjects. bioRxiv // Cold Spring Harbor Laboratory. - 2017. - Vol. 44, № 5. - P. 189043. Doi: 10.1101/189043.
9. Ecological dynamics of the vaginal microbiome in relation to health and disease. The American Journal of Obstetrics & Gynecology / S. Greenbaum, G. Greenbaum, J. Y. Moran-Gilad, A. Weintruab // Elsevier Inc. - 2019. - Vol. 220, № 4. - P. 1-12. Doi: 10.1016/j.ajog.2018.11.1089.
10. Aagaard K., Ma J., Antony K. M. et al. The Placenta Harbors a Unique Microbiome // Sci. Transl. Med. - 2014. -Vol. 6, № 237. - P. 65-65. Doi: 10.1126/scitranslmed.3008599
11. Aragon I. M., Herrera-Imbroda B. The urinary tract microbiome in health and disease // Elsevier. - 2018. - Vol. 4, № 1. - P. 128-138. Doi: 10.1016/j.euf.2016.11.001.
12. Cani P. D. Human gut microbiome: hopes, threats and promises. Gut. BMJ Publishing Group. - 2018. - Vol. 67, № 9. - P. 1716-1725. Doi: 10.1136/gutjnl-2018-316723.
13. Miklossy J. Alzheimer's disease - a neurospirochetosis. Analysis of the evidence following Koch‘s and Hill's criteria. J Neuroinflammation // BioMed. Central. - 2011. -Vol. 8, № 1. - P. 1-16. Doi: 10.1186/1742-2094-8-90.
14. Emery D. C., Shoemark D. K., Batstone T. E. et al. 16S rRNA Next Generation Sequencing Analysis Shows Bacteria in Alzheimer's Post-Mortem Brain // Front Aging Neurosci. - 2017. -Vol. 9. - P. 419-413. Doi: 10.3389/fnagi.2017.00195.
15. Goodrich J. K., Di Rienzi S. C., Poole A. C. et al. Conducting a microbiome study // Cell. - 2014. - Vol. 158, № 2. - P. 250-262. Doi: 10.1016/j.cell.2014.06.037.
16. Weinstock G. M. Genomic approaches to studying the human microbiota // Nature. - 2012. -Vol. 489, № 7415. -P. 250-256. Doi: 10.1038/nature11553.
17. Wang B., Yao M., Lv. L. et al. The Human Microbiota in Health and Disease. Engineering. Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. - 2017. -Vol. 3, № 1. - P. 71-82. Doi: 10.1016/J.ENG.2017.01.008.
18. Stiemsma L. T, Michels K. B. The Role of the Microbiome in the Developmental Origins of Health and Disease. Pediatrics. - 2018. -Vol. 141, № 4. - P. e20172437-24. Doi: 10.1542/peds.2017-2437.
19. Honda K., Littman D. R. The microbiota in adaptive immune homeostasis and disease // Nature. - 2016. - Vol. 535, № 7610. -P. 75-84. Doi: 10.1038/nature18848.
20. Gilbert J. A., Quinn R. A., Debelius J. Microbiome-wide association studies link dynamic microbial consortia to disease // Nature. - 2016 . - Vol. 535, № 7610. -P. 94-103. Doi: 10.1038/nature18850.
21. Kho Z.Y., Lal S. K. The Human Gut Microbiome -A Potential Controller of Wellness and Disease // Front Microbiol. - 2018. - Vol. 14, № 9. - P. 215-223. Doi: 10.3389/fmicb.2018.01835.
22. Morgan X. C., Huttenhower C. Chapter 12. Human microbiome analysis / eds by F. Lewitter, M. Kann // PLoS Comput Biol // Public Library of Science. - 2012. - Vol. 8, № 12. - P. e1002808. Doi: 10.1371/journal.pcbi.1002808.
23. Goodrich J. K., Waters J. L., Poole A. C. Human Genetics Shape the Gut Microbiome // Cell. Cell Press. - 2014. -Vol. 159, № 4. - P. 789-799. Doi: 10.1016/j.cell.2014.09.053.
24. Wang J., Thingholm L. B, Skieceviciene J. et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota // Nat Genet. - 2016. - Vol. 48, № 11. - P. 1396-1406. Doi: 10.1038/ng.3695.
25. Benson A. K. The gut microbiome-an emerging complex trait. Nature Publishing Group. Nature Publishing Group. - 2016. - Vol. 48, № 11. - P. 1301-1302. Doi: 10.1038/ng.3707.
26. Sonnenburg E. D., Smits S. A., Tikhonov M. et al. Diet-induced extinctions in the gut microbiota compound over generations // Nature. Nature Publishing Group. - 2016. -Vol. 529, № 7585. - P. 212-215. Doi: 10.1038/nature16504.
27. Substantial contribution of extrinsic risk factors to cancer development / S. Powers, W. Zhu, S. Wu, Y. A Hannun // Nature. Nature Publishing Group. - 2015. - Vol. 529, № 7584. - P. 1-15. Doi: 10.1038/nature16166.
28. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans // Biological agents. Volume 100 B: A review of human carcinogens. IARC monographs on the evaluation of carcinogenic risks to humans. - 2012. - Vol. 100. - P. 1-441. PMID: 23189750. PMCID: PMC4781184.
29. Liu W., MacDonald M. Merkel cell polyomavirus infection and Merkel cell carcinoma // Elsevier. - 2016. -Vol. 20. - P. 20-7. Doi: 10.1016/j.coviro.2016.07.011.
30. Scanu T., Spaapen R. M., Bakker J. M. et al. Salmonella Manipulation of Host Signaling Pathways Provokes Cellular Transformation Associated with Gallbladder Carcinoma // Cell. Host. and Microbe. - 2015. - Vol. 17, № 6. - P. 763-774. Doi: 10.1016/j.chom.2015.05.002.
31. Mughini-Gras L., Schaapveld M., Kramers J. et al. Increased colon cancer risk after severe Salmonella infection. Schildgen O, editor. PLoS ONE // Public Library of Science. - 2018. - Vol. 13, № 1. - P. e0189721. Doi: 10.1371/journal.pone.0189721.
32. Trabert B., Waterboer T. Antibodies Against Chlamydia trachomatis and Ovarian Cancer Risk in Two Independent Populations // JNCI J Natl Cancer Inst. - 2019. - Vol. 111, № 2. Doi: 10.1093/jnci/djy084.
33. Kostic A. D., Chun E., Robertson L. et al. Fusobac-terium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment // Cell Host and Microbe. Cell Press. - 2013. - Vol. 14, № 2. - P. 207-215. Doi: 10.1016/j.chom.2013.07.007.
34. Buc E., Dubois D., Sauvanet P. et al. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer / eds by J. R. Battista// PLoS ONE. Public Library of Science. - 2013. - Vol. 8, № 2. - P.e56964. Doi: 10.1371/journal.pone.0056964.
35. Toprak N. U., Yagci A., Gulluoglu B. M. et al. Possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer // Clin. Microbiol. Infect. - 2006. - Vol. 12, № 8. - P. 782-786. Doi: 10.1111/j.1469-0691.2006.01494.x.
36. Cohen R. J., Shannon B. A. Propionibacterium acnes associated with inflammation in radical prostatectomy specimens: a possible link to cancer evolution // The Journal Of Urology. - 2005. - Vol. 173. - P. 1969-1974. Doi: 10.1097/01.ju.0000158161.15277.78.
37. Shinohara D. B., Vaghasia A. M., Yu S.-H. et al. A mouse model of chronic prostatic inflammation using a human prostate cancer-derived isolate of Propionibacterium acnes. Prostate. - 2013. - Vol. 73, № 9. - P.1007-1015. Doi: 10.1002/pros.22648.
38. Banerjee S., Alwine J. C., Wei Z. et al. Microbiome signatures in prostate cancer // Carcinogenesis. - 2019. -Vol. 349. - P. 7-16. Doi: 10.1093/carcin/bgz008.
39. Shrestha E., White J. R., Yu S.-H. et al. Profiling the Urinary Microbiome in Men with Positive versus Negative Biopsies for Prostate Cancer // Journal of Urology. - 2018. - Vol. 199, № 1. - P. 161-171. Doi: 10.1016/j.juro.2017.08.001.
40. Geller L. T., Barzily-Rokni M., Danino T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine // Science. - 2017. - Vol. 357, № 6356. - P. 1156-1160. Doi: 10.1126/science.aah5043.
41. Urbaniak C., Gloor G. B., Brackstone M. et al. The Microbiota of Breast Tissue and Its Association with Breast Cancer / eds by H. Goodrich-Blair // Applied microbiology / American Society for Microbiology. - 2016. - Vol. 82, № 16. - P. 5039-5048. Doi: 10.1128/AEM.01235-16.
42. Xuan C., Shamonki J. M., Chung A. et al. Microbial dysbiosis is associated with human breast cancer. Takabe K, editor. PLoS ONE // Public Library of Science. - 2014. -Vol. 9, № 1. - P. e83744. Doi: 10.1371/journal.pone.0083744.
43. Hieken T. J., Chen J., Hoskin T. L. et al. The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease. Scientific Reports // Nature Publishing Group. - 2016. - Vol. 6, № 1. - P. 30751. Doi: 10.1038/srep30751.
44. Greathouse K. L., White J. R., Vargas A. J. et al. Interaction between the microbiome and TP53 in human lung cancer // Genome Biology. - 2018. - Vol. 19, № 1. - P. 1-16. Doi: 10.1186/s13059-018-1501-6.
45. Yamamura K., Baba Y., Nakagawa S. et al. Human Microbiome Fusobacterium Nucleatum in Esophageal Cancer Tissue Is Associated with Prognosis // Clin. Cancer Res. - 2016. - Vol. 22, № 22. - P. 5574-5581. Doi: 10.1158/1078-0432.CCR-16-1786.
46. Deshpande N. P., Riordan S. M., Castano-Rodriguez N. et. al. Signatures within the esophageal microbiome are associated with host genetics, age, and disease. Microbiome // BioMed Central. - 2018. - Vol. 6, № 1. - P. 227. Doi: 10.1186/s40168-018-0611-4.
47. Baba Y., Iwatsuki M., Yoshida N. et. al. Review of the gut microbiome and esophageal cancer. - Pathogenesis and potential clinical implications // Ann. Gastroenterol. Surg. - 2017. - Vol. 1, № 2. - P. 99-104. Doi: 10.1002/ags3.12014.
48. Quantitative Profiling of Colorectal Cancer-Associated Bacteria Reveals Associations between Fusobacterium spp., Enterotoxigenic Bacteroides fragilis (ETBF) and Clinicopath-ological Features of Colorectal Cancer / K. S. Viljoen, A. Dakshinamurthy, P. Goldberg, J. M.Blackburn // McDowell A, editor. PLoS ONE. - 2015. - Vol. 10, № 3. - P. e0119462-21. Doi: 10.1371/journal.pone.0119462.
49. Dejea C. M., Wick E. C., Hechenbleikner E. M. et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci USA. National Academy of Sciences. - 2014. - Vol. 111, № 51. - P. 18321-18326. Doi: 10.1073/pnas.1406199111.
50. Zolfo M., Tett A., Jousson O. et al. MetaMLST: Multi-locus strain-level bacterial typing from metagenomic samples // Nucleic Acids Research. - 2017. - Vol. 45, № 2. -P. e7-e7. Doi: 10.1093/nar/gkw837.
51. Deciphering interactions between the gut microbiota and the immune system via microbial cultivation and minimal microbiomes / T. Clavel, J. C. Gomes-Neto, I. Lagkouvardos, A. E. Ramer-Tait // Immunol Rev. - 2017. - Vol. 279, № 1. -P. 8-22. Doi: 10.1111/imr.12578.
52. Overmann J., Abt B., Sikorski J. Present and Future of Culturing Bacteria. Annu Rev Microbiol. - 2017. -Vol.71, № 1. - P. 711-730. Doi: 10.1146/annurev-micro-090816-093449.
53. Tetz V., Tetz G. Draft Genome Sequence of a Strain of Bacillus intestinalissp. nov., a New Member of Sporo-biota Isolated from the Small Intestine of a Single Patient with Intestinal Cancer // Genome Announc. - 2017. - Vol. 5, № 22. - P. 14-12. Doi: 10.1128/genomeA.00489-17.
54. Tetz G., Vecherkovskaya M., Zappile P. et al. Complete Genome Sequence of Kluyvera intestinisp. nov., Isolated from the Stomach of a Patient with Gastric Cancer // Genome Announc. - 2017. - Vol. 5, № 43. - P. 1-2. Doi: 10.1128/genomeA.01184-17.
55. Tetz G., Tetz V., Vecherkovskaya M. Genomic characterization and assessment of the virulence and antibiotic resistance of the novel species Paenibacillus sp. strain VT-400, a potentially pathogenic bacterium in the oral cavity of patients with hematological malignancies. Gut Pathog // BioMed. Central. - 2016. - Vol. 8, № 1. - P. 1-9. Doi: 10.1186/s13099-016-0089-1.
56. Vecherkovskaya M. F., Tetz G. V, Tetz V. V. Complete Genome Sequence of the Streptococcus sp. Strain VT 162, Isolated from the Saliva of Pediatric Oncohematology Patients. - 2014. - Vol. 2, № 4. Doi: 10.1128/genomeA.00647-14.
57. Gabrilovich D. I. Myeloid-Derived Suppressor Cells. Cancer Immunol Res // American Association for Cancer Research. - 2017. - Vol. 5, № 1. - P. 3-8. Doi: 10.1158/2326-6066.CIR-16-0297.
58. Arthur J. C., Perez-Chanona E., Muhlbauer M. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science // American Association for the Advancement of Science. - 2012. - Vol. 338, № 6103. - P. 120-123. Doi: 10.1126/science.1224820.
59. Zackular J. P., Baxter N. T., Iverson K. D. et al. The Gut Microbiome Modulates Colon Tumorigenesis // American Society for Microbiology. - 2013. - Vol. 4, № 6. -P. e00692-13-13. Doi: 10.1128/mBio.00692-13.
60. Crawford R. W., Wangdi T., Spees A. M. et al. Loss of very-long O-antigen chains optimizes capsule-mediated immune evasion by Salmonella enterica serovar Typhi // American Society for Microbiology. - 2013. - Vol. 4, № 4. - P. 63. Doi: 10.1128/mBio.00232-13.
61. Cress B. F., Englaender J. A., He W. et al. Masquerading microbial pathogens. - capsular polysaccharides mimic host-tissue molecules // FEMS Microbiology Reviews. - 2014. - Vol. 38, № 4. - P. 660-697. Doi: 10.1111/15746976.12056.
62. Cullen T. W., Giles D. K., Wolf L. N. et al. Helicobacter pylori versus the host. - remodeling of the bacterial outer membrane is required for survival in the gastric mucosa // PLoS Pathog. - 2011. - Vol. 7, № 12. - P. e1002454. Doi: 10.1371/journal.ppat.1002454.
63. Andersen-Nissen E., Smith K. D., Strobe K. L. et al. Evasion of Toll-like receptor 5 by flagellated bacteria. Proceedings of the National Academy of Sciences // National Academy of Sciences. - 2005. - Vol. 102, № 26. - P. 92479252. Doi: 10.1073/pnas.0502040102.
64. Raibaud S., Schwarz-Linek U., Kim J. H. et al. Borrelia burgdorferi binds fibronectin through a tandem beta-zipper, a common mechanism of fibronectin binding in staphylococci, streptococci, and spirochetes // J. Biol. Chem. / American Society for Biochemistry and Molecular Biology. - 2005. - Vol. 280, № 19. - P. 18803-18809. Doi: 10.1074/jbc.M501731200.
65. Wiedemann T., Hofbaur S., Tegtmeyer N. et al. Helicobacter pylori CagL dependent induction of gastrin expression via a novel ave5-integrin-integrin linked kinase signalling complex. Gut // BMJ Publishing Group. - 2012. - Vol. 61, №7. - P. 986-96. Doi: 10.1136/gutjnl-2011-300525.
66. The inflammatory microenvironment and microbiome in prostate cancer development. Nature Publishing Group / K. S. Sfanos, S. Yegnasubramanian, W. G. Nelson, A. M. De Marzo // Nature Publishing Group. - 2017. - Vol. 15, № 1. - P. 11-24. Doi: 10.1038/nrurol.2017.167.
67. Rosadi F., Fiorentini C., Fabbri A. Bacterial protein toxins in human cancers. Frisan T, editor // Pathogens and Disease. - 2016. - Vol. 74, №1. - P. 105. Doi: 10.1093/femspd/ftv105.
68. Lu R., Wu S., Zhang Y.-G. et al. Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway. Oncogenesis // Nature Publishing Group. - 2014. - Vol. 3, № 6. - P. e105-5. Doi: 10.1038/oncsis.2014.20
69. Tetz V. V, Tetz G. V. Bacterial DNA induces the formation of heat-resistant disease-associated in human plasma // Scientific Reports. -2019. Doi: 10.1038/s41598-019-54618-9.
70. Dong Q. L., Xing X. Y. Cancer cells arise from bacteria. Cancer Cell Int // BioMed. Central. - 2018. - Vol. 18, № 1. - P. 1-9. Doi: 10.1186/s12935-018-0699-4.
71. Garrett W. S. Cancer and the microbiota // Science. - 2015. - Vol. 348, № 6230. - P. 80-86. Doi: 10.1126/science.aaa4972.
72. Microbiome and Anticancer Immunosurveillance / L. Zitvogel , M. Ayyoub, B. Routy, G. Kroemer // Cell. - 2016. - Vol. 165, № 2. - P. 276-287. Doi: 10.1016/j.cell.2016.03.001.
73. Yoshimoto S., Loo T. M, Atarashi K. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome // Nature. Nature Publishing Group. -2013. - Vol. 499, № 7456. -P. 97-101. Doi: 10.1038/nature12347.
74. Wu S., Rhee K.-J., Zhang M. et al. Bacteroides fra-gilis toxin stimulates intestinal epithelial cell shedding and Y-secretase-dependent E-cadherin cleavage. Journal of Cell Science // The Company of Biologists Ltd. - 2007. - Vol. 120, № 11. - P. 1944-1952. Doi: 10.1242/jcs.03455.
75. Wang F., Meng W., Wang B. Helicobacter pylori-in-duced gastric inflammation and gastric cancer // Elsevier. - 2014. - Vol. 345, № 2. - P. 196-202. Doi: 10.3892/ol.2016.5506.
76. Fassi Fehri L., Mak T. N., Laube B. Prevalence of Propionibacterium acnes in diseased prostates and its inflammatory and transforming activity on prostate epithelial cells // Int. J. Med. Microbiol. - 2011. - Vol. 301, № 1. - P. 69-78. Doi: 10.1016/j.ijmm.2010.08.014.
77. Peek R. M., Blaser M. J. Helicobacter pylori and gastrointestinal tract adenocarcinomas // Nature Reviews Cancer. - 2002. - Vol. 2, № 1. - P. 28-37. Doi: 10.1038/nrc703.
78. Kawasaki K., Ernst R. K, Miller S. I. 3-O-deacylation of lipid A by PagL, a PhoP/PhoQ-regulated deacylase of Salmonella typhimurium, modulates signaling through Toll-like receptor 4 // J. Biol. Chem. American Society for Biochemistry and Molecular Biology. - 2004. - Vol. 279, № 19. - P. 20044-20048. Doi: 10.1074/jbc.M401275200.
79. Rubinstein M. R., Wang X., Liu W. Fusobacterium nu-cleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/e-Catenin Signaling via its FadA Adhesin // Cell Host and Microbe. - 2013. - Vol. 14, № 2. - P. 195-206. Doi: 10.1016/j.chom.2013.07.012.
80. Wardill H. R., Gibson R. J., Van Sebille Y. Z. A. et al. Irinotecan-Induced Gastrointestinal Dysfunction and Pain Are Mediated by Common TLR4-Dependent Mechanisms // Mol. Cancer Ther.American Association for Cancer Research. -2016. - Vol. 15, № 6. - P. 1376-1386. Doi: 10.1158/1535-7163.MCT-15-0990.
81. Viaud S., Saccheri F., Mignot G. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide // Science. - 2013. - Vol. 342, № 6161. -P. 971-976. Doi: 10.1126/science.1240537.
82. Sivan A., Corrales L., Hubert N. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy // Science. - 2015. - Vol. 350, № 6264. -P. 1084-1089. Doi: 10.1126/science.aac4255.
83. Voorde J. V, Sabuncuoglu S., Noppen S. et al. Nucle-oside-catabolizing Enzymes in Mycoplasma-infected Tumor Cell Cultures Compromise the Cytostatic Activity of the Anticancer Drug Gemcitabine // J. Biol. Chem. American Society for Biochemistry and Molecular Biology. - 2014. - Vol. 289, № 19. - P. 13054-13065. Doi: 10.1074/jbc.M114.558924.
84. Montassier E., Gastinne T., Vangay P. et al. Chemotherapy-driven dysbiosis in the intestinal microbiome // Aliment Pharmacol Ther. - 2015. - Vol. 42, № 5. - P. 515-528. Doi: 10.1111/apt.13302.
85. Daillere R., Vetizou M., Waldschmitt N. et al. Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. // Immunity. - 2016. - Vol. 45, № 4. - P. 931-943. Doi: 10.1016/j.immuni.2016.09.009.
86. Iida N., Dzutsev A., Stewart C. A. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science // American Association for the Advancement of Science. - 2013. - Vol. 342, № 6161. -P. 967-970. Doi: 10.1126/science.1240527.
87. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota / M. Vetizou, J. M. Pitt, R. Daillere, P. Lepage // Science. - 2015. - Vol. 350, № 6264. - P. 10771079. Doi: 10.1126/science.aad1329.
88. Frank M., Hennenberg E. M, Eyking A. et al. TLR signaling modulates side effects of anticancer therapy in the small intestine // J. Immunol. American Association of Immunologists. - 2015. - Vol. 194, № 4. - P. 1983-1995. Doi: 10.4049/jimmunol.1402481.
89. Kurita A., Kado S., Matsumoto T. et al. Streptomycin alleviates irinotecan-induced delayed-onset diarrhea in rats by a mechanism other than inhibition of в-glucuronidase activity in intestinal lumen // Cancer Chemother. Pharmacol. - 2010. - Vol. 67, № 1. - P. 201-213. Doi: 10.1007/s00280-010-1310-4.
90. Dubin K., Callahan M. K., Ren B. et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis // Nat. Comms. Nature Publishing Group. - 2016. - Vol. 7, № 1. - P. 10391. Doi: 10.1038/ncomms10391.
91. Bronckaers A., Balzarini J., Liekens S. The cytostatic activity of pyrimidine nucleosides is strongly modulated by Mycoplasma hyorhinis infection. Implications for cancer therapy // Biochem. Pharmacol. - 2008. - Vol. 76, № 2. -P. 188-197. Doi: 10.1016/j.bcp.2008.04.019.
92. Wallace B. D., Wang H., Lane K. T. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science. American Association for the Advancement of Science. - 2010. - Vol. 330, № 6005. - P. 831-835. Doi: 10.1126/science.1191175.
93. Fijlstra M., Ferdous M., Koning A. M. et al. Substantial decreases in the number and diversity of microbiota during chemotherapy-induced gastrointestinal mucositis in a rat model // Support Care Cancer. - 2015. - Vol. 23, № 6. -P. 1513-1522. Doi: 10.1007/s00520-014-2487-6.
94. Villeger R., Lopes A., Veziant J. et al. Microbial markers in colorectal cancer detection and/or prognosis // WJG. - 2018. - Vol. 24, № 22. - P. 2327-2347. Doi: 10.3748/wjg.v24.i22.2327.
95. Amitay E. L., Krilaviciute A. Systematic review. Gut microbiota in fecal samples and detection of colorectal neoplasms // Gut microbes. - 2018. - Vol. 9, № 4. - P. 293-307. Doi: 10.1080/19490976.2018.1445957.
96. Yang J., Mu X., Wang Y. et al. Dysbiosis of the Salivary Microbiome Is Associated With Non-smoking Female Lung Cancer and Correlated With Immunocytochemistry Markers // Front Oncol. Frontiers. - 2018. - Vol. 8. - P. 520. Doi: 10.3389/fonc.2018.00520.
Рецензия
Для цитирования:
Вечерковская М.Ф., Тец Г.В., Тец В.В. Микробиота и онкологические заболевания (обзор литературы). Учёные записки Первого Санкт-Петербургского государственного медицинского университета имени академика И. П. Павлова. 2020;27(4):14-27. https://doi.org/10.24884/1607-4181-2020-27-4-14-27
For citation:
Vecherkovskaya M.F., Tetz G.V., Tetz V.V. Microbiota and cancer (review of literature). The Scientific Notes of the Pavlov University. 2020;27(4):14-27. (In Russ.) https://doi.org/10.24884/1607-4181-2020-27-4-14-27