Preview

The Scientific Notes of the Pavlov University

Advanced search

IMMUNOHISTOCHEMICAL STUDY OF PROTEINS PROX1, CD133 AND CD38 IN GLIOBLASTOMAS OF THE VENTRICULARSUBVENTRICULAR ZONE AND THEIR EFFECT ON THE LIFE EXPECTANCY OF PATIENTS

https://doi.org/10.24884/1607-4181-2020-27-1-75-85

Abstract

Introduction. Glioblastoma (GBM) is one of the most malignant tumors. Currently, treatment options for GBM are limited, and patient survival rates over the past decades have not changed significantly.

The objective of the study was a comparative study of the expression of proteins Prox1, CD38, and CD133 in GBM in contact (VSVZ+) and not in contact with the ventricular-subventricular zone (VSVZ–).

Methods and materials. Immunohistochemical study with antibodies to Prox1, Ki-67, CD38, CD133 and morphometric analysis of GBM fragments of 10 patients of VSVZ + and 8 patients of VSVZ-.

Results. The median of the number of CD133+ cells in VSVZ+ and VSVZ-GBM was 34.5 % and 10 %, respectively. CD38+ cells were found in all of the VSVZ+ GBM and only in one of the VSVZ– GBM. PROX1 was expressed in 34.6 % of VSBZ– GBM cells and in 79 % of VSVZ+ GBM cells. The median life expectancy was statistically significantly greater in the GBM VSVZ– group than in the GBM VSVZ+ group (6 versus 4 months). Direct correlations were found between the number of CD38+ and CD133+ cells (r=0.596), between tumor localization and the number of CD133+ cells (r=0.760), inverse correlations between life expectancy and tumor localization (r=–0.607), and the number of CD38+ (r=–0.755) and CD133+ cells (r=–0.630). Regression analysis showed that the number of CD133+ cells was associated with a lifespan of linear function.

Conclusions.VSVZ+ GBM have more CD133+ and CD38+ cells and have a lower median survival compared to VSVZ– GBM.

About the Authors

B. E. Galkovsky
Almazov National Medical Research Centre
Russian Federation

pathologist, PhD student

2, Akkuratova str., Saint Petersburg, 197341, Russia



L. B. Mitrofanova
Almazov National Medical Research Centre
Russian Federation

Dr. of Sci. (Med.), Professor of the Department of Pathology, Chief Researcher of the Scientific Research Laboratory of Pathomorphology

2, Akkuratova str., Saint Petersburg, 197341, Russia



Iu. S. Lakhina
Almazov National Medical Research Centre
Russian Federation

laboratory assistant at the Research Laboratory of Integrative Neurosurgical Technologies

2, Akkuratova str., Saint Petersburg, 197341, Russia



D. A. Gulyaev
Almazov National Medical Research Centre
Russian Federation

Dr. of Sci. (Med.), Head of the Research Laboratory of Integrative Neurosurgical Technologies, neurosurgeon

2, Akkuratova str., Saint Petersburg, 197341, Russia




V. Y. Chirkin
Almazov National Medical Research Centre
Russian Federation

Cand. of Sci. (Med.), neurosurgeon

2, Akkuratova str., Saint Petersburg, 197341, Russia



N. A. Mitrofanov
Pavlov University
Russian Federation

Cand. of Sci. (Med.), associate Professor of the Department of Radiology and Radiation Medicine

 Saint Petersburg





I. V. Chistova
North-Western State Medical University named after I. I. Mechnikov
Russian Federation

Cand. of Sci. (Med.), Assistant of the Department of Neurology

Saint Petersburg

Competing Interests:

 

 



References

1. Louis D. N., Cancer L., Al E. WHO Classification of Tumours of the Central Nervous System. 4th ed. Lyon, International Agency For Research On Cancer, 2016.

2. Ostrom Q. T., Gittleman H., Liao P., Rouse C., Chen Y., Dowling J. et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2007–2011. Neuro-Oncology. 2014;16(suppl 4):iv1–63. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193675/ (accessed: 04.03.2019).

3. Stupp R., Mason W. P., van den Bent M. J., Weller M., Fisher B., Taphoorn M. J. B. et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. New England Journal of Medicine. 2005;352(10):987–996. Available at: https://www.nejm.org/doi/10.1056/NEJMoa043330?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dwww.ncbi.nlm.nih.gov (accessed: 19.11.2019).

4. Eriksson M., Kahari J., Vestman A., Hallmans M., Johansson M., Bergenheim A. T. et al. Improved Treatment of Glioblastoma – Changes in Survival over Two Decades at a Single Regional Centre. Acta Oncologica. 2019;58(3):334–341. Available at: https://www.tandfonline.. com/doi/full/10.1080/0284186X.2019.1571278 (accessed: 19.11.2019).

5. Mistry A. M., Dewan M. C., White-Dzuro G. A., Brinson P. R., Weaver K. D., Thompson R. C. et al. Decreased Survival in Glioblastomas Is Specific to Contact with the Ventricular-Subventricular Zone, Not Subgranular Zone or Corpus Callosum. Journal of Neuro-Oncology. 2017;132(2):341–349. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5771712/ (accessed: 19.11.2019).

6. Mistry A. M., Wooten D. J., Davis L. T., Mobley B. C., Quaranta V., Ihrie R. A. Ventricular-Subventricular Zone Contact by Glioblastoma is Not Associated with Molecular Signatures in Bulk Tumor Data. Scientific Reports. 2019;9(1). Available at: https://www.nature.com/articles/s41598-018-37734-w (accessed: 19.11.2019).

7. Xu X., Wan X., Wei X. PROX1 Promotes Human Glioblastoma Cell Proliferation and Invasion via Activation of the Nuclear Factor-κB Signaling Pathway. Molecular Medicine Reports. 2016;15(2):963–968. Available at: https://www.spandidos-publications.com/mmr/15/2/963 (accessed: 05.09.2019).

8. Nikiforova Z. N., Kudryavtsev I. A., Arnotskaya N. E., Bryukhovetskiy I. S., Shevchenko V. E. Tumor Stem Cells from Glioblastoma Multiforme. Advances in molecular oncology. 2016;3(2):26–33. (In Russ.).

9. Li Z. CD133: a Stem Cell Biomarker and beyond. Experimental Hematology & Oncology. 2013;2(1). Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701589/ (accessed: 19.11.2019).

10. Levy A., Blacher E., Vaknine H., Lund F. E., Stein R., Mayo L. CD38 Deficiency in the Tumor Microenvironment Attenuates Glioma Progression and Modulates Features of Tumor-Associated Microglia/Macrophages. Neuro-Oncology. 2012;14(8):1037–1049. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3408254/ (accessed: 19.11.2019).

11. deSouza R. M., Shaweis H., Han C., Sivasubramaniam V., Brazil L., Beaney R. et al. Erratum: Has the survival of patients with glioblastoma changed over the years? British Journal of Cancer. 2016;114(12):e20–e20. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4815808/ (accessed: 19.11.2019).

12. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T. et al. Fiji: an Open-source Platform for Biological-image Analysis. Nature Methods. 2012;9(7):676–682. Available at: https://www.ncbi.nlm.nih.gov/pubmed/22743772 (accessed: 30.03.2019).

13. Sanai N., Nguyen T., Ihrie R. A., Mirzadeh Z., Tsai H.-H., Wong M. et al. Corridors of Migrating Neurons in the Human Brain and Their Decline during Infancy. Nature. 2011;478(7369):382–386. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197903/ (accessed: 22.11.2019).

14. Gonzalez-Perez O. Neural Stem Cells in the Adult Human Brain Biological and Biomedical Reports. 2012;2(1):59–69. Available at: https://www.semanticscholar.org/paper/Neural-stem-cells-in-the-adult-human-brain.-Gonzalez-Perez/6e6185d06e11b04ee4570d1b34368d9df1a7b245 (accessed: 05.09.2019).

15. Altmann C., Keller S., Schmidt M. H. H. The Role of SVZ Stem Cells in Glioblastoma. Cancers. 2019;11(4):448. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6521108/ (accessed: 22.11.2019).

16. Schiffer D., Annovazzi L., Casalone C., Corona C., Mellai M. Glioblastoma: Microenvironment and Niche Concept. Cancers. 2018;11(1):5. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357107/ (accessed: 22.11.2019).

17. Costa F., Toscani D., Chillemi A., Quarona V., Bolzoni M., Marchica V. et al. Expression of CD38 in Myeloma Bone Niche: a Rational Basis for the Use of AntiCD38 Immunotherapy to Inhibit Osteoclast Formation. Oncotarget. 2017;8(34). Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5593586/ (accessed: 22.11.2019).

18. Aulakh S., Manna A., Schiapparelli P., Ailawadhi S., Paulus A., Rosenfeld S. et al. CD38-targeted Therapy in Glioblastoma: a Step forward. Journal of Clinical Oncology. 2018;36(15_suppl):e14030–e14030. Available at: https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.15_suppl.e14030 (accessed: 22.11.2019).

19. Deaglio S., Morra M., Mallone R., Ausiello C., Prager E., Garbarino G. et al. Human CD38 (ADP- Ribosyl Cyclase) Is a Counter-Receptor of CD31, an Ig Superfamily Member. The Journal of Immunology. 1998;198(1):395–402. Available at: https://www.jimmunol.org/content/160/1/395.long (accessed: 05.09.2019).

20. Aarhus R., Graeff R. M., Dickey D. M., Walseth T. F., Hon C. L. ADP-ribosyl Cyclase and CD38 Catalyze the Synthesis of a Calcium-mobilizing Metabolite from NADP+. Journal of Biological Chemistry. 1995;270(51):30327–30333.

21. Blacher E., Ben Baruch B., Levy A., Geva N., Green K. D., Garneau-Tsodikova S. et al. Inhibition of Glioma Progression by a Newly Discovered CD38 Inhibitor. International Journal of Cancer. 2014;136(6):1422–1433. Available at: https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.29095 (accessed: 22.11.2019).

22. Chen L., Diao L., Yang Y., Yi X., Rodriguez B. L., Li Y. et al. CD38-Mediated Immunosuppression as a Mechanism of Tumor Cell Escape from PD-1/PD-L1 Blockade. Cancer Discovery. 2018;8(9):1156–1175. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205194/ (accessed: 22.11.2019).

23. Hashii M., Amina S., Lopatina O., Higashida H. Role of Human CD38/ADP Ribosyl Cyclase for Cell Migration. Neuroscience Research. 2010;68:e135. Available at: https://www.sciencedirect.com/science/article/pii/S0168010210023874?via %3Dihub (accessed: 22.11.2019).

24. Kroonen J., Nassen J., Boulanger Y.-G., Provenzano F., Capraro V., Bours V. et al. Human Glioblastoma-initiating Cells Invade Specifically the Subventricular Zones and Olfactory Bulbs of Mice after Striatal Injection. International Journal of Cancer. 2010;129(3):574–585. Available at: https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.25709 (accessed: 22.11.2019).

25. Liu X., Chen L., Jiang Z., Wang J., Su Z., Li G. et al. Malignant Behaviorial Characteristics of CD133+/− Glioblastoma Cells from a Northern Chinese Population. Experimental and Therapeutic Medicine. 2012;5(1):65–72. Available at: https://www.spandidos-publications.com/10.3892/etm.2012.747 (accessed: 26.11.2019).

26. Brown D. V., Filiz G., Daniel P. M., Hollande F., Dworkin S., Amiridis S. et al. Expression of CD133 and CD44 in Glioblastoma Stem Cells Correlates with Cell Proliferation, Phenotype Stability and Intra-tumor Heterogeneity. Harrison J. K., editor. PLOS One. 2017;12(2):e0172791. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5328356/(accessed: 22.11.2019).

27. Mistry A. M., Hale A. T., Chambless L. B., Weaver K. D., Thompson R. C., Ihrie R. A. Influence of Glioblastoma Contact with the Lateral Ventricle on Survival: a Meta-analysis. Journal of Neuro-Oncology. 2016;131(1):125–33. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5262526/ (accessed: 08.12.2019).

28. Hartmann C., Hentschel B., Wick W., Capper D., Felsberg J., Simon M. et al. Patients with IDH1 Wild Type Anaplastic Astrocytomas Exhibit Worse Prognosis than IDH1-mutated Glioblastomas, and IDH1 Mutation Status Accounts for the Unfavorable Prognostic Effect of Higher Age: Implications for Classification of Gliomas. Acta Neuropathologica. 2010;120(6):707–718. Available at: https://link.springer.com/article/10.1007 %2Fs00401-010-0781-z (accessed: 25.11.2019).

29. Yan H., Parsons D. W., Jin G., McLendon R., Rasheed B. A., Yuan W. et al. IDH1 and IDH2 Mutations in Gliomas. New England Journal of Medicine. 2009;360(8):765–773. Available at: https://www.nejm.org/doi/full/10.1056/NEJMoa0808710 (accessed: 05.09.2019).

30. Tateishi K., Yamamoto T. IDH-Mutant Gliomas. Brain and Spinal Tumors – Primary and Secondary [Working Title]. 2019 Feb 23. Available at: https://www.intechopen.com/online-first/idh-mutant-gliomas (accessed: 08.12.2019).

31. Khrunin A. V., Khokhrin D. V., Filippova I. N., Esko T., Nelis M., Bebyakova N. A. et al. A Genome-Wide Analysis of Populations from European Russia Reveals a New Pole of Genetic Diversity in Northern Europe. Oleksyk T. K., editor. PLoS ONE. 2013;8(3):e58552. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591355/ (accessed: 05.12.2019).

32. Chen N., Yu T., Gong J., Nie L., Chen X., Zhang M. et al. IDH1/2 Gene Hotspot Mutations in Central Nervous System Tumours: Analysis of 922 Chinese Patients. Pathology. 2016;48(7):675–683. Available at: https://www.sciencedirect.com/science/article/pii/S0031302516397707?via %3Dihub (accessed: 08.12.2019).

33. Korshunov A., Casalini B., Chavez L., Hielscher T., Sill M., Ryzhova M. et al. Integrated molecular characterization of IDH -mutant glioblastomas. Neuropathology and Applied Neurobiology. 2018;45(2):108–118. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/nan.12523 (accessed: 08.12.2019).

34. Glumac P. M., LeBeau A. M. The Role of CD133 in Cancer: a Concise Review. Clinical and Translational Medicine. 2018;7(1). Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6035906/ (accessed: 26.11.2019).


Review

For citations:


Galkovsky B.E., Mitrofanova L.B., Lakhina I.S., Gulyaev D.A., Chirkin V.Y., Mitrofanov N.A., Chistova I.V. IMMUNOHISTOCHEMICAL STUDY OF PROTEINS PROX1, CD133 AND CD38 IN GLIOBLASTOMAS OF THE VENTRICULARSUBVENTRICULAR ZONE AND THEIR EFFECT ON THE LIFE EXPECTANCY OF PATIENTS. The Scientific Notes of the Pavlov University. 2020;27(1):75-85. (In Russ.) https://doi.org/10.24884/1607-4181-2020-27-1-75-85

Views: 897


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-4181 (Print)
ISSN 2541-8807 (Online)