Preview

The Scientific Notes of the Pavlov University

Advanced search

DOPAMINE RECEPTOR D2 (DRD2) IN PERIPHERAL BLOOD LYMPHOCYTES AS BIOMARKER OF RESPONSE TO ANTIPSYCHOTIC MEDICATION

https://doi.org/10.24884/1607-4181-2020-27-1-45-56

Abstract

Introduction. Despite the evolution of antipsychotic drugs, the problem of the therapy effectiveness and safety of schizophrenia spectrum disorders and comorbid conditions is very acute. The dopamine receptor D2 gene (DRD2) is one of the key targets of modern pharmacogenetic studies of mental disorders.

The objective of the study was to analyze the DRD2 mRNA level in peripheral blood lymphocytes and to identify genetic variations of –141С Ins/Del as potential biomarkers for antipsychotic therapy prognosis.

Methods and materials. The study included 112 patients with mental disorders: 61 – with a diagnosis of schizophrenia spectrum disorder, 51 – with a comorbid disease course with alcohol dependence syndrome, and 112 people as a control group. Psychometric evaluation was carried out using PANSS scale. The material was peripheral blood lymphocytes (PBLs). The DRD2 mRNA level was determined by real-time polymerase chain reaction with TaqMan probe. Genotyping –141С Ins/Del was performed by the restriction fragment length polymorphism assay.

Results. –141C Ins/Del DRD2 genetic variations are not associated with a risk of mental disorder development, and they did not affect the DRD2 mRNA level in PBLs. There were no significant differences in the gene expression of DRD2 in the control group and patients (p=0.194). Despite the improvement of the mental state in all patients included in the study, the studied DRD2 parameters did not affect either the mental disorder symptoms or the normalization of the patient status against the background of antipsychotic therapy. Ins/Ins genetic variation of –141C Ins/Del was significantly associated with an increase weight gain of more than 7 % on the 28th day of antipsychotic therapy.

Conclusion. Ins/Ins genetic variation of –141C Ins/Del can be considered as a biomarker for the prognosis of antipsychotic-induced weight gain. 

About the Authors

M. N. Grunina
National Research Centre «Kurchatov Institute»
Russian Federation

Junior Researcher, Laboratory of molecular human genetic

PNPI, 1, mkr. Orlova roshcha, Gatchina, Leningradskaya Oblast, 188300,
Russia




A. M. Zabotina
Kurchatov Institute; Pavlov University
Russian Federation

Junior Researcher, Laboratory of molecular human genetic

PNPI, 1, mkr. Orlova roshcha, Gatchina, Leningradskaya Oblast, 188300,
Russia




A. S. Zhuravlev
National Research Centre «Kurchatov Institute»
Russian Federation
Junior Researcher, Laboratory of molecular human genetic

PNPI, 1, mkr. Orlova roshcha, Gatchina, Leningradskaya Oblast, 188300, Russia



M. M. Pchelina
Pavlov University
Russian Federation

Junior Researcher, Laboratory of Molecular Biology

Saint Petersburg

 



E. V. Volkova
Pavlov University
Russian Federation

Junior Researcher, Division of Molecular and Nanobiological Technologies

Saint Petersburg





R. F. Nasyrova
Bekhterev National Medical Research Center for Psychiatry and Neurology
Russian Federation

Dr. of Sci. (Med.), Head of the Department of Personalized Psychiatry and Neurology, Leading Researcher of the Department of Biological Therapy for Patients with Mental Disorders

Saint Petersburg




A. E. Taraskina
Kurchatov Institute; Pavlov University; Bekhterev National Medical Research Center for Psychiatry and Neurology
Russian Federation

Cand. of Sci. (Biol.), Senior Researcher, Laboratory of molecular human genetic; Head of the Laboratory of Molecular Biology, Division of Molecular and Nanobiological Technologies; Senior Researcher of the Department of Biological Therapy for Patients with Mental Disorders

Saint Petersburg 



E. M. Krupitsky
Bekhterev National Medical Research Center for Psychiatry and Neurology; Pavlov University
Russian Federation

Dr. of Sci. (Med.), Professor, Deputy Director for Science, Head of the Department of Addictions; Head of the Laboratory of Clinical Psychopharmacology of Addictions of the Institute of Pharmacology named after A.V. Valdman

Saint Petersburg



References

1. Brody H. Schizophrenia. Nature. 2014;508(7494):S1. Doi: 10.1038/508S1a.

2. Seidman L.J., Mirsky A.F. Evolving notions of schizophrenia as a developmental neurocognitive disorder. J. Int. Neuropsychol. Soc. 2017;23:881-892. Doi: 10.1017/S1355617717001114.

3. Pepper E.J., Pathmanathan S., Mcllrae S., Rehman F.U., Cardno A.G. Associations between risk factors for schizophrenia and concordance in four monozygotic twin samples. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2018;177(5):503-510. Doi: 10.1002/ajmg.b.32640.

4. Mosolov S.N. Biological methods of treatment of mental disorders. Evidence-based medicine to clinical practice. M., 2012; 1080 p. ISBN 978-5-915790-75-8. (In Russ.).

5. Brisch R., Saniotis A., Wolf R., Bielau H., Bernstein H.G., Steiner J., Bogerts B., Braun A.K., Jankowski Z., Kumaritlake J., Henneberg M., Gos T. The Role of Dopamine in Schizophrenia from a Neurobiological and Evolutionary Perspective: Old Fashioned, but Still in Vogue. Front. Psychiatry. 2014;5(47). Doi: 10.3389/fpsyt.2014.00047.

6. Lai C.-Y., Scarr E., Udawela M., Everall I., Chen W.J., Dean B. Biomarkers in schizophrenia: A focus on blood based diagnostics and theranostics. Word. J. Psychiatr. 2014;6(1):102-117. Doi: 10.5498/wjp.v6.i1.102.

7. McKenna F., McLaughlin P.J., Lewis B.J., Sibbring G.C., Cummerson J.A., Bowen-Jones D., Moots R.J. Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. J. Neuroimmunol. 2002;132(1-2):34-40. Doi: 10.1016/s0165-5728(02)00280-1.

8. Levite M. Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases. Acta Physiol. 2016;216:42-89. Doi: 10.1111/apha.12476.

9. Tourjman V., Kouassi E., Koue M.-E., Rocchetti M., Fortin-Fournier S., Fusar-Poli P., Potvin S. Antipsychotics' effects on blood levels of cytokines in schizophrenia: a meta-analysis. Schizophr. Res. 2013;151(1-2):43-47. Doi: 10.1016/j.schres.2013.10.011.

10. Bergguist J., Silberring J. Identification of catecholamines in the immune system by electrospray ionization mass spectrometry. Rapid. Commun. Mass Spectrom. 1998;12(11):683-688. Doi: 10.1002/(sici)1097-0231(19980615)12:11<683::aid-rcm218>3.0.co;2-n.

11. Pellicano C., Pontieri F.E., Fanciulli A., Buttarelli F.R. The dopaminergic system in peripheral blood lymphocytes: from physiology to pharmacology and potential applications to neuropsychiatric disorders. Current Neuropharmacology. 2011;9:278-288. Doi: 10.2174/157015911795596612.

12. Singh A.N., Barlas C., Saeedi H., Mishra R.K. Effect of loxapine on peripheral dopamine-like and serotonin receptors in patients with schizophrenia. J. Psychiatry Neurosci. 2003;28(1):39-47.

13. Rojo L.E., Gaspar P.A., Silva H., Risco L., Arena P., Cubillos-Robles K., Jara B. Metabolic syndrome and obesity among user of second generation antipsychotics: A global challenge for modern psychopharmacology. Pharmacological Research. 2015;101:74-85. Doi: 10.1016/j.phrs.2015.07.022

14. Rampino A., Marakhovskaia A., Soares-Silva T., Torretta S., Veneziani F., Beaulieu J.M. Antipsychotic drug responsiveness and dopamine receptor signaling; old players and new prospects. Frontier in Psychiatry. 2019;9:Article 702. Doi: 10.3389/fpsyt.2018.00702.

15. Ripke S., Neale B.M., Corvin A. et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421-427. Doi: 10.1038/nature13595.

16. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421-427. Doi: 10.1038/nature13595.

17. Reble E., Dineen A., Barr C.L. The contribution of alternative splicing to genetic risk for psychiatric disorders. Genes Brain Behav. 2018;17(3):e12430. Doi: 10.1111/gbb.12430.

18. Liu L., Yuan G., Cheng Z., Zhang G., Liu X., Zhang H. Identification of the mRNA expression status of the dopamine D2 receptor and dopamine transporter in peripheral blood lymphocytes of schizophrenia patients. PLoS One. 2013;8(9):1-6. Doi: 10.1371/journal.pone.0075259

19. Cui Y., Prabhu V., Nguyen T.B., Yadav B.K., Chung Y.C. The mRNA expression status of dopamine receptor D2, dopamine receptor D3 and DARPP-32 in T lymphocytes of patients with early psychosis. Int. J. Mol. Sci. 2015;16(11):26677-86. Doi: 10.3390/ijms161125983.

20. Escamilla R., Camarena B., Saracco-Alvares R., Fresan A., Hernandez S., Aguilar-Garcia A. Association study between COMT, DRD2, and DRD3 gene variants and antipsychotic treatment response in Mexican patients with schizophrenia. Neuropsychiatr. Dis. Treat. 2018;14:2981-2987. Doi: 10.2147/NDT.S176455.

21. Kay S.R., Fiszbеin A., Opler L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bull. 1987;13:261. Doi: 10.1093/schbul/13.2.261.

22. Lewis C.M., Levinson D.F., Wise L.H., et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet. 2003;73(1):34-48. Doi: 10.1086/376549.

23. Arinami T., Gao M., Hamaguchi H., Toru M. A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum Mol Genet. 1997;6(4):577-582. Doi: 10.1093/hmg/6.4.577

24. Kampman O., Anttila S., Illi A., Lehtimaki T., Mattila K.M., Roivas M., Leinonen E. Dopamine receptor D2 -141 Insertion/Deletion polymorphism in a Finnish population with schizophrenia. Psychiatry Res. 2003;121(1):89-92. Doi: 10.1016/S0165-1781(03)00201-4.

25. Cordeiro Q., Siqueira-Roberto J., Zung S., Vallada H. Association between the DRD2 -141C insertion/deletion polymorphism and schizophrenia. Arg Neuropsiquiatr. 2009;67(2-A):191-194. Doi: 10.1590/s0004-282x2009000200004.

26. Zvara A., Szekeres G., Janka Z., Kelemen J.Z., Cimmer C., Santha M., Puskas L.G. Over-expression of dopamine D2 receptor and inwardly rectifying potassium channel genes in drug-naïve schizophrenic peripheral blood lymphocytes as potential diagnostic markers. Dis Markers. – 2005;21(2):61-69. Doi: 10.1155/2005/275318.

27. Brito-Melo G.E., Nicolato R., de Oliveira A.C., Menezes G.B., Lelis F.J., Avelar R.S., Sa J., Bauer M.E., Souza B.R., Teixeira A.L., Reis H.J. Increase in dopaminergic, but not serotoninergic, receptors in T-cells as a marker for schizophrenia severity. J Psychiatr. 2012;46(6):738-742. Doi: 10.1016/j.jpsychires.2012.03.004.

28. Genis-Mendoza A.D., Tovilla-Zarate C.A., Lopez-Narvaez L., Mendoza-Lorenzo P., Ostrosky-Wegman P., Nicolini H., Gonzalez-Castro T.B., Hernandez-Diaz Y. Effect on the expression of drd2 and drd3 after neonatal lesion in the lymphocytes, nucleus accumbens, hippocampus and prefrontal cortex: comparative analysis between juvenile and adult Wistar rats. Hereditas. 2016;153(13). Doi: 10.1186/s41065-016-0018-9.

29. Wu S., Xing Q., Gao R., Li X., Gu N., Feng G., He L. Response to chlorpromazine treatment may be associated with polymorphism of the DRD2 gene in Chinese schizophrenic patients. Neurosci Lett. 2005;376:1-4. Doi: 10.1016/j.neulet.2004.11.014.

30. Zhang J.P., Lencz T., Malhotra A.K. D2 receptor genetic variation and clinical response to antipsychotic drug treatment: a meta-analysis. Am J Psychiatry. 2010;167(7):763-72. Doi: 10.1176/appi.ajp.2009.09040598.

31. Zhang J.P., Malhotra A.K. Pharmacogenetics and antipsychotics: Therapeutic efficacy and side effects prediction. Expert Opin Drug Metab Toxical. 2011;7(1):9-37. Doi: 10.1517/17425255.2011.532787.

32. Gao K., Fang F., Wang Z., Calabrese J.R. Subjective Versus Objective Weight Gain During Acute Treatment With Second-Generation Antipsychotics in Schizophrenia and Bipolar Disorder. J Clin Psychopharmacol. 2016;36(6):637-642. Doi: 10.1097/JCP.0000000000000596.

33. Kapur S., Marques T.T. Dopamine, striatum, antipsychotics, and questions about weight gain. JAMA Psychiatry. 2016;73(2):107-8. Doi: 10.1001/jamapsychiatry.2015.2872.

34. Beeler J.A., Faust R.P., Turkson S., Ye H., Zhuang X. Low dopamine D2 receptor increases vulnerability to obesity via reduced physical activity not increased appetitive motivation. Biol Psychiatry. 2016;79(11):887-897. Doi: 10.1016/j.biopsych.2015.07.009.

35. Freyberg Z., McCarthy M.J. Dopamine D2 receptors and the circadian clock reciprocally mediate antipsychotic drug-induced metabolic disturbances. NPJ Schizophrenia. 2017;3(17). Doi: 10.1038/s41537-017-0018-4.

36. Lencz T., Robinson D.G., Napolitano B., Sevy S., Kane J.M., Goldman D., Malhotra A.K.. DRD2 promoter region variation predicts antipsychotic-induced weight gain in first episode schizophrenia. Pharmacogenet Genomics. 2010;20(9):569-572. Doi: 10.1097/FPC.0b013e32833ca24b.


Review

For citations:


Grunina M.N., Zabotina A.M., Zhuravlev A.S., Pchelina M.M., Volkova E.V., Nasyrova R.F., Taraskina A.E., Krupitsky E.M. DOPAMINE RECEPTOR D2 (DRD2) IN PERIPHERAL BLOOD LYMPHOCYTES AS BIOMARKER OF RESPONSE TO ANTIPSYCHOTIC MEDICATION. The Scientific Notes of the Pavlov University. 2020;27(1):45-56. (In Russ.) https://doi.org/10.24884/1607-4181-2020-27-1-45-56

Views: 1299


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-4181 (Print)
ISSN 2541-8807 (Online)