Correlation between the preoperative MR-assessment of the pituitary adenoma’s consistency and the intraoperative condition during transsphenoidal removal
https://doi.org/10.24884/1607-4181-2025-32-3-53-60
Abstract
The objective was to identify preoperative neuroimaging parameters that predict the consistency of pituitary adenoma intraoperatively and determine further treatment tactics.
Material and methods. A clinical study of 75 patients with a histologically confirmed diagnosis of pituitary adenoma was conducted. The average age was 51.3±14.8 years, the median was 52 (37/65) years. Preoperative diagnosis was based on clinical and laboratory data, the results of neuroimaging research methods. The study analyzed neuroimaging predictors of adenoma consistency in the preoperative period, with subsequent confirmation intraoperatively. Intraoperative interpretation of tumor density was based on the classification of Rutkowski M.J. (2020).
Results. Transsphenoidal access with endoscopic assistance was used for all the studied patients. Radical removal was performed in 89.3 % of cases (N=67), subtotal removal in 10.7 % (N= 8). In all subtotally operated patients, after 3–6 months, continued tumor growth was observed in MRI monitoring, which in a number of patients required repeated transsphenoidal removal of the sac (in 9.4 %), and in 1.3 % – transcranial removal (through lateral supraorbital access). There was no correlation with histological subtypes of the tumor and the level of ki-67. During the intraoperative analysis, the soft consistency of pituitary adenoma was predominantly found (74.7 %), medium and dense consistency was less common (10.7 and 13.3 %, respectively). T1-isotensive signal may be a predictor of intraoperatively milder pituitary adenoma density (r=0.383; p=0.02). Hyperintensivity of the T2 signal only in combination with elevated values of hypocoagulation markers (PTT and INR) may indicate a soft density of pituitary adenoma (p<0.04).
Conclusions. Predicting tumor consistency at the preoperative stage is an important factor in planning surgical tactics, but not the only one. The prognosis of a dense tumor structure combined with an assessment of its invasiveness – laterosellar growth into the cavernous sinus (Knosp 3–4), suprasellar spread into the structures of the hypothalamus, ventricular system (Hardy 3–4), may preoperatively indicate a high probability of continued growth, the expediency of transcranial removal of the tumor, the timing of follow-up examinations, the need for radiosurgical treatment.
About the Authors
M. Yu. KurnukhinaRussian Federation
Kurnukhina Mariya Yu., Cand. of Sci. (Med), Neurosurgeon
6-8, L’va Tolstogo str., Saint Petersburg, 197022
Competing Interests:
Authors declare no conflict of interest.
V. Yu. Cherebillo
Cherebillo Vladislav Yu., Dr. of Sci. (Med), Professor, Head of the Department of Neurosurgery
6-8, L’va Tolstogo str., Saint Petersburg, 197022
Competing Interests:
Authors declare no conflict of interest.
A. E. Borisov
Borisov Alexandr E., Postgraduate Student
6-8, L’va Tolstogo str., Saint Petersburg, 197022
Competing Interests:
Authors declare no conflict of interest.
G. V. Gavrilov
Gavrilov Gaspar V., Dr. of Sci. (Med), Associate Professor, Head of Neurosurgical Department № 2
6-8, L’va Tolstogo str., Saint Petersburg, 197022
Competing Interests:
Authors declare no conflict of interest.
V. N. Ochkolyas
Ochkolyas Vladislav N., Dr. of Sci. (Med), Professor of the Department of Neurosurgery
6-8, L’va Tolstogo str., Saint Petersburg, 197022
Competing Interests:
Authors declare no conflict of interest.
References
1. Ostrom Q. T., Cioffi G., Waite K. et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 20142018 // Neuro-Oncology. 2021;23:iii1–iii105. https://doi.org/10.1093/neuonc/noab200.
2. Cancela A. A., Berrocal R. V., Pian H. et al. Clinical relevance of tumor consistency in pituitary adenoma // Hormones (Athens). 2021;20(3):463–473. https://doi.org/10.1007/s42000-021-00302-5.
3. Jin G., Hao S., Xie J. et al. Collision tumors of the sella: coexistence of pituitary adenoma and craniopharyngioma in the sellar region // World Journal of Surgical Oncology. 2013;7(11):178. https://doi.org/10.1186/1477-7819-11-178.
4. Banskota S., Adamson D. C. Pituitary Adenomas: From Diagnosis to Therapeutics // Biomedicines. 2021;9(5):494. https://doi.org/10.3390/biomedicines9050494.
5. Kalinin P. L., Kadashev B. A., Fomichev D. V. et al. Surgical treatment for pituitary adenomas // Burdenko’s Journal of Neurosurgery. 2017;81(1):95–107. (In Russ.). https://doi.org/10.1055/s-2002-36197.
6. Molitch M. E. Diagnosis and treatment of pituitary adenomas: a review // JAMA. 2017;317(5):516–524. https://doi.org/10.1001/jama.2016.19699.
7. Cappabianca P., Cavallo L. M. Colao A. et al. Endoscopic endonasal transsphenoi- dal approach: outcome analysis of 100 consecutive procedures // Minimally Invasive Neurosurgery. 2002;45(4):193–200. https://doi.org/10.1055/s-2002-36197.
8. Pappy A. L., Savinkina A., Bicknese C. et al. Predictive modeling for pituitary adenomas: single center experience in 501 consecutive patients // Pituitary. 2019;22(5:520–531. https://doi.org/10.1007/s11102-019-00982-8.
9. Lv L., Yin S., Zhou P. et al. Clinical and Pathologic Characteristics Predicted the Postoperative Recurrence and Progression of Pituitary Adenoma: A Retrospective Study with 10 Years Follow-Up // World Neurosurgery. 2018;118:e428– e435. https://doi.org/10.1016/j.wneu.2018.06.210.
10. Ko C. C., Chen T. Y., Lim S. W. et al. Prediction of recurrence in solid nonfunctioning pituitary macroadenomas: additional benefits of diffusion-weighted MR imaging // Journal of Neurosurgery. 2019;132(2):351–359. https://doi.org/10.3171/2018.10.JNS181783.
11. Cherebillo V. Yu., Kurnukhina M. Yu. Quality of life in patients with pituitary adenomas in the pre- and postoperative period // Burdenko’s Journal of Neurosurgery. 2019;83(2):11– 16. (In Russ.). https://doi.org/10.17116/neiro20198302111.
12. Thotakura A. K., Patibandla M. R., Panigrahi M. K., Mahadevan A. Is it really possible to predict the consistency of a pituitary adenoma preoperatively? // Neurochirurgie. 2017;63(6):453–457. https://doi.org/10.1016/j.neuchi.2017.06.003.
13. Cherebillo V. Yu., Kurnukhina M. Y., Gusev A. A., Puzakov N. S. The degree of invasion of the pituitary adenoma into the cavernous sinus as one of the factors affecting the quality of life and intellectual-mnestic function before and after resection // Head and neck. Russian Journal. 2020;8(2):16– 21. (In Russ.). https://doi.org/10.25792/HN.2020.8.2.16-21.
14. Toader C., Bratu B. G., Mohan A. G. et al. Compsrison of transcranial and transsphenoidal approaches in intra and suprasellar pituitary adenomas – systematic review // Acta Endocrinologica (Buchar). 2023;19(2):228–233. https://doi.org/10.4183/aeb.2023.228.
15. Kitano M., Taneda M. Extended transsphenoidal approach with submucosal posterior ethmoidectomy for parasellar tumors. Technical note // Journal of Neurosurgery. 2001;94(6):999–1004. https://doi.org/10.3171/jns.2001.94.6.0999.
16. Mortini P., Albano L., Barzaghi L. R., Losa M. Pituitary Surgery // La Presse Médicale. 2021;50(4):104079. https://doi.org/10.1016/j.lpm.2021.104079.
17. Rutkowski M. J., Chang K. E., Cardinal T. et al. Development and clinical validation of a grading system for pituitary adenoma consistency // Journal of Neurosurgery. 2020;134(6):1800–1807. https://doi.org/10.3171/2020.4.
18. Snow R. B., Johnson C. E., Morgello S. et al. Is magnetic resonance imaging useful in guiding the operative approach to large pituitary tumors? // Neurosurgery. 1990;26(5):801–3. https://doi.org/10.1097/00006123-199005000-00011.
19. Schur S., Lasry O., Tewfik Marc A., Di Maio S. Assessing the association of tumor consistency and gland manipulation on hormonal outcomes and delayed hyponatremia in pituitary mac- roadenoma surgery // Interdisciplinary Neurosurgery. 2020;20:100628. https://doi.org/10.1016/j.inat.2019.100628.
20. Cappelletti M., Ruggeri A. G., Spizzichino L. et al. Fibrous pituitary macroadenomas: predictive role of preoperative radiologic investigations for proper surgical planning in a cohort of 66 patients // World Neurosurgery. 2019;121:e449– e457. https://doi.org/10.1016/j.wneu.2018.09.137.
21. Rutland J. W., Loewenstern J., Ranti D. et al. Analysis of 7-tesla diffusion-weighted imaging in the prediction of pituitary macroadenoma consistency // Journal of Neurosurgery. – 2021;134(3):771–779. https://doi.org/10.3171/2019.12.jns192940.
22. Yiping L., Ji X., Daoying G., Bo Y. Prediction of the consistency of pituitary adenoma: A comparative study on diffusion-weighted imaging and pathological results // Journal of Neuroradiology. 2016;43(3):186–94. https://doi.org/10.1016/j.neurad.2015.09.003.
23. Smith K. A., Leever J. D., Chamoun R. B. Prediction of Consistency of Pituitary Adenomas by Magnetic Resonance Imaging // Journal of Neurological Surgery Part B: Skull Base. – 2015;76(5):340–3. https://doi.org/10.1055/s0035-1549005.
24. Nasledov A. IBM SPSS Statistics 20 and Amos: Professional statistical analysis of data. Practical guidance. St. Petersburg: Peter, 2013;416. (In Russ.).
25. Snow R. B., Lavyne M. H., Lee B. C. et al. Craniotomy versus transsphenoidal excision of large pituitary tumors: the usefulness of magnetic resonance imaging in guiding the operative approach // Neurosurgery. 1986;19(1):59–64. https://doi.org/10.1227/00006123-198607000-00008.
26. Bahuleyan B., Raghuram L., Rajshekhar V., Chacko A. G. To assess the ability of MRI to predict consistency of pituitary macroadenomas // The British Journal of Neurosurgery. 2006;20(5):324–6. https://doi.org/10.1080/02688690601000717.
27. Mahmoud O. M., Tominaga A., Amatya V. J. et al. Role of PROPELLER diffusion-weighted imaging and apparent diffusion coefficient in the evaluation of pituitary adenomas // The European Journal of Radiology. 2011;80(2):412–7. https://doi.org/10.1016/j.ejrad.2010.05.023.
28. Chen X. Y., Ding C. Y., You H. H. et al. Relationship Between Pituitary Adenoma Consistency and Extent of Resection Based on Tumor/Cerebellar Peduncle T2-Weighted Imaging Intensity (TCTI) Ratio of the Point on Preoperative Magnetic Resonance Imaging (MRI) Corresponding to the Residual Point on Postoperative MRI // Medical Science Monitor. 2020;26:e919565. https://doi.org/10.12659/MSM.919565.
29. Nie D., Fang Q., Cheng J. et al. The intestinal flora of patients with GHPA affects the growth and the expression of PD-L1 of tumor // Cancer Immunology, Immunotherapy. 2022;71(5):1233–1245. https://doi.org/10.1007/s00262-02103080-6.
30. Green M. A., Bilston L. E., Sinkus R. In vivo brain viscoelastic properties measured by magnetic resonance elastography // NMR in Biomedicine. 2008;21(7):755–64. https://doi.org/10.1002/nbm.1254.
31. Kruse S. A., Rose G. H., Glaser K. J. et al. Magnetic resonance elastography of the brain // Neuroimage. 2008;39(1):231–7. https://doi.org/10.1016/j.neuroimage.2007.08.030.
32. Kurnukhina M. Y., Cherebillo V. Y., Gavrilov G. V. et al. Adenoma or cholesteatoma: difficulties in preoperative neuroimaging of formations chiasmal-cellular region (a rare clinical case and literature review) // Bulletin of Neurology, Psychiatry and Neurosurgery. 2025;4. (In Russ.). https://doi.org/10.33920/med-01-2504-05.
33. Cohen-Cohen S., Helal A., Yin Z. et al. Predicting pituitary adenoma consistency with preoperative magnetic resonance elastography // Journal of Neurosurgery. 2021; 136(5):1356–1363. https://doi.org/10.3171/2021.6.
Review
For citations:
Kurnukhina M.Yu., Cherebillo V.Yu., Borisov A.E., Gavrilov G.V., Ochkolyas V.N. Correlation between the preoperative MR-assessment of the pituitary adenoma’s consistency and the intraoperative condition during transsphenoidal removal. The Scientific Notes of the Pavlov University. 2025;32(3):53-60. (In Russ.) https://doi.org/10.24884/1607-4181-2025-32-3-53-60


































