Justification of the sequence of using two wavelengths (1.5 and 0.97 microns) in interstitial hyperthermia of biological objects
https://doi.org/10.24884/1607-4181-2025-32-2-64-70
Abstract
Introduction. The LITT (Laser Interstitial Thermotherapy) laser technique uses radiation of the same wavelength, either 0.98 microns or 1.06 microns, spectrally located nearby. According to the absorption spectrum, these radiations are predominantly hemoglobin absorbing and are similar in interaction with biological tissue.
The objective was to determine the possibilities of using waves differing in chromophores in laser hyperthermia of tumors.
Methods and materials. We conducted the study on the effectiveness of exposure to different wavelengths, both in the variant of sequential and simultaneous irradiation of the phantom of the surrogate of living tissue (SLT) and the protein model of hemoglobin with absorbable and water-absorbable radiation. An optical fiber with a butt end and a radial tip type was used.
Results. Water-absorbing radiation with wavelengths of 1.56 microns and 1.94 microns made it possible to quickly achieve volumetric coagulation of egg white. On the contrary, radiation of 0.97 microns poorly coagulated egg white at similar radiation powers, due to the absence of hemoglobin in the egg. In the SLT containing hemoglobin, the volume of coagulate depended on the wavelength used, the concentration of hemoglobin and the type of fiber tip. The largest volume of coagulated SLT phantom was achieved by using 1.56 microns radiation with the radial end of the optical fiber. The use of a simultaneous combination of two radiations of 0.98 microns and 1.56 microns at standard power parameters in the coagulation mode seems impractical due to the more aggressive interaction on the example of SLT.
Conclusions. The optimal mode of irradiation when performing interstitial laser hyperthermia of a tumor is the consistent use of initially water absorbing and then hemoglobin absorbing wavelengths.
About the Authors
O. V. OstreikoRussian Federation
Ostreiko Oleg V., Cand. of Sci. (Med), Associate Professor, Associate Professor of the Department of Neurosurgery
6-8, L’va Tolstogo str., Saint Petersburg, 197022
Competing Interests:
Authors declare no conflict of interest.
N. N. Petrishchev
Russian Federation
Petrishchev Nikolay N., Dr. of Sci. (Med), Professor, Professor of the Department of Pathophysiology with the Course of Clinical Pathophysiology
6-8, L’va Tolstogo str., Saint Petersburg, 197022
Competing Interests:
Authors declare no conflict of interest.
T. G. Grishacheva
Russian Federation
Grishacheva Tatyana G., Cand. of Sci. (Biol.), Director of the Center for Laser Medicine
6-8, L’va Tolstogo str., Saint Petersburg, 197022
Competing Interests:
Authors declare no conflict of interest.
V. P. Minaev
Russian Federation
Minaev Vladimir P., Chief Research Fellow
3, build. 5, Academician B. A. Vvedensky Square, Fryazino, Moscow region, 141190
Competing Interests:
Authors declare no conflict of interest.
S. G. Chefu
Russian Federation
Chefu Svetlana G., Cand. of Sci. (Biol.), Head of the Experimental Laboratory of the Center for Laser Medicine
6-8, L’va Tolstogo str., Saint Petersburg, 197022
Competing Interests:
Authors declare no conflict of interest.
References
1. Chen C., Lee I., Tatsui C. et al. Laser interstitial thermotherapy (LITT) for the treatment of tumors of the brain and spine: a brief review // J Neurooncol. 2021;151(3):429–442. https://doi.org/10.1007/s11060-020-03652-z.
2. Alkazemi M., Lo Y. T., Hussein H. et al. Laser Interstitial Thermal Therapy for the Treatment of Primary and Metastatic Brain Tumors: A Systematic Review and Meta-Analysis // World Neurosurg. 2023;171:e654–e671. PMID: 36549438. https://doi.org/10.1016/j.wneu.2022.12.079.
3. Bown S. G. Phototherapy in tumors // World J Surg. 1983;7:700–709. https://doi.org/10.1007/bf01655209.
4. Friebel M., Helfmann J., Netz U. J., Meinke M. C. Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2000 nm // Journal of Biomedical Optics. 2009;14(3):034001. https://doi.org/10.1117/1.3127200.
5. Marchenko A. A, Minaev V. P., Smirnov I. V., Shevelkina E. D. Evaluation of optical properties of blood in the radiation wavelength range of 1.3 - 2.0 μm // Laser Medicine. 2019;23(2):44–51. (In Russ.). https://doi.org/10.37895/2071-8004-2019-23-2-44-51.
6. Rozumenko V. D. Neuronavigation technology of virtual 3D planning and intraoperative support of laser thermal destruction of intracerebral tumors of the cerebral hemispheres // Ukrainian neurosurgical journal. 2015;(3):43–49. (In Russ.).
7. Kovalenko A. A., Minaev V. P. On the possibility of using fiber laser radiation with wavelengths of 1.56 and 1.68 μm for interstitial thermotherapy of pathological neoplasms // Radiooptics. Bauman Moscow State Technical University. Electronic journal. 2015;(05):101–114. (In Russ.). https://doi.org/10.7463/rdopt.0515.0798995.
8. Casanova-Carvajal O., Zeinoun M., Urbano-Bojorge A. L. et al. The Use of Silica Microparticles to Improve the Efficiency of Optical Hyperthermia (OH) // Int. J. Mol. Sci. 2021;22(10):5091. https://doi.org/10.3390/ijms22105091.
9. Nevorotin A. I., Zhloba A. A., Ilyasov I. K. Surrogate of living tissue for testing surgical lasers // Bulletin of Experimental Biology and Medicine. 1996;122(11):597–600. (In Russ.).
10. Krasnikov A. G., Pluzhnikov M. S., Nevorotin A. I., Plotkina O. V. Semiconductor laser “Aktus-15”: identification of optimal parameters using a tissue phantom // Collection of scientific papers “Current problems of laser medicine”, eds by N. N. Petrishchev. 2006:299–306. (In Russ.).
11. Astakhov Yu. S., Akopov E. L., Ivanov A. A., et al. Development and experimental testing of a two-wave laser system for photocoagulation of eye tissues // Oftalmologicheskie vedomosti. 2013;6(2):10–15. (In Russ.). https://doi.org/10.17816/OV2013210-15.
12. Ostreyko O. V., Mozhaev S. V., Shevtsov M. A., Pozhivil A. S. Experimental study of interstitial thermal destruction of the brain by laser radiation of the infrared spectrum as a minimally invasive method of stereotactic destruction of the target // Scientific notes. 2012;(4):77–80. (In Russ.).
13. Ostreyko O. V., Cherebillo V. Yu., Kholyavin A. I. et al. Minimally invasive laser hyperthermia in the complex treatment of local continued growth of glioblastomas (pilot study) // Russian Neurosurgical Journal named after prof. A. L. Polenov. 2023;15(3):88–96. (In Russ.). https://doi.org/10.56618/2071-2693_2023_15_3_88.
14. Ryabova M. A., Ulupov M. Yu., Shumilova N. A. et al. Comparison of cutting and coagulation properties of fiber lasers with a wavelength of 1.56 and 1.94 μm with a 0.98 μm semiconductor laser // Bulletin of Siberian Medicine. 2021;20(4):56–62. (In Russ.). https://doi.org/10.20538/1682-0363-2021-4-56-62.
15. Ostreiko O. V., Yukina G. Yu., Sukhorukova E. G. et al. Thermophysical modeling and results of an experimental study of laser hyperthermia of gliomas // Russian Neurosurgical Journal named after prof. A. L. Polenov. 2023;15(3):97–102. (In Russ.). https://doi.org/10.56618/2071–2693_2023_15_3_97.
16. Ko S. B., Choi H. A., Parikh G. et al. Real time estimation of brain water content in comatose patients // Ann Neurol. – 2012. – Vol. 72, № 3. – P. 344–50. https://doi.org/10.1002/ana.23619.
17. Ostreiko O. V., Galkin M. A., Papayan G. V. et al. Application of biophantoms to assess the thermal effects of laser radiation with wavelengths of 970 nm and 1560 nm under different exposure modes // Biomedical Photonics. 2022;11(2):12–22. (In Russ.). https://doi.org/10.24931/2413-9432-2022-11-2-12-22.
Supplementary files
Review
For citations:
Ostreiko O.V., Petrishchev N.N., Grishacheva T.G., Minaev V.P., Chefu S.G. Justification of the sequence of using two wavelengths (1.5 and 0.97 microns) in interstitial hyperthermia of biological objects. The Scientific Notes of the Pavlov University. 2025;32(2):64-70. (In Russ.) https://doi.org/10.24884/1607-4181-2025-32-2-64-70