Preview

The Scientific Notes of the Pavlov University

Advanced search

Thiazolopyrimidinium systems with a quaternized nitrogen atom as promising anticancer agents

https://doi.org/10.24884/1607-4181-2024-31-2-10-18

Abstract

Thiazolopyrimidinium systems with a quaternized nitrogen atom are attracting increasing attention in the development of new anticancer drugs. Their unique chemical structure and potential biological properties make them promising candidates for the development of effective drugs. In recent years, researches have shown that these compounds have significant activity against various types of tumors due to their ability to interact with cellular targets, disrupting processes critical for the survival and proliferation of tumor cells. This review examines the current state of researches on thiazolopyrimidines, including synthesis, mechanisms of action, and evaluation of their antitumor potential, with an emphasis on the importance of the quaternized nitrogen atom in their biological activity.

About the Authors

B. V. Paponov
Pavlov University
Russian Federation

Paponov Boris V. - Associate Professor of the Department of General and Bioorganic Chemistry.

Saint Petersburg


Competing Interests:

Authors declare no conflict of interest



O. S. Shemchuk
Pavlov University; A.M. Granov Russian Research Centre for Radiology and Surgical Technologies
Russian Federation

Shemchuk Olga S. - Postgraduate Student, Specialist in Educational and Methodological Work of the Department of General and Bioorganic Chemistry, Pavlov University (Saint Petersburg, Russia), Junior Research Fellow of the Department of Fundamental Researches, A. M. Granov RRCRST.

Saint Petersburg


Competing Interests:

Authors declare no conflict of interest



D. N. Maistrenko
A.M. Granov Russian Research Centre for Radiology and Surgical Technologies
Russian Federation

Maistrenko Dmitrii N. - Dr. of Sci. (Med.), Director, A. M. Granov RRCRST.

Saint Petersburg


Competing Interests:

Authors declare no conflict of interest



O. E. Molchanov
A.M. Granov Russian Research Centre for Radiology and Surgical Technologies
Russian Federation

Molchanov Oleg E. - Dr. of Sci. (Med.), Head of the Department of Fundamental Researches, A. M. Granov RRCRST.

Saint Petersburg


Competing Interests:

Authors declare no conflict of interest



V. V. Sharoyko
Pavlov University; A.M. Granov Russian Research Centre for Radiology and Surgical Technologies; St Petersburg University
Russian Federation

Vladimir V. Sharoyko - Dr. of Sci. (Biol.), Professor of the Department of General and Bioorganic Chemistry, Pavlov U, Leading Research Fellow of the Department of Solid State Chemistry of the Institute of Chemistry, St Petersburg U, Leading Research Fellow of the Department of Fundamental Researches, A. M. Granov RRCRST.

6-8, L’va Tolstogo str., Saint Petersburg, 197022


Competing Interests:

Authors declare no conflict of interest



K. N. Semenov
Pavlov University; A.M. Granov Russian Research Centre for Radiology and Surgical Technologies; St Petersburg University
Russian Federation

Semenov Konstantin N. - Dr. of Sci. (Med.), Professor of the Department of General and Bioorganic Chemistry, Pavlov U, Chief Research Fellow of the Department of Fundamental Researches, A. M. Granov RRCRST, Professor of the Department of Solid State Chemistry of the Institute of Chemistry, St Petersburg U.

Saint Petersburg


Competing Interests:

Authors declare no conflict of interest



References

1. Miller K. D., Siegel R. L., Lin C. C. et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66(4):271–289.

2. Zhong L., Li Y., Xiong L. et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther. 2021;6(1):201.

3. Pommier Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer. 2006;6(10):789–802.

4. Dezhenkova L. G., Tsvetkov V. B., Shtil A. A. Topoisomerase I and II inhibitors: chemical structure, mechanisms of action and role in cancer chemotherapy. Russian Chemical Reviews. 2014;83(1):82–94.

5. Berman H. M., Young P. R. The interaction of intercalating drugs with nucleic acids. Annu Rev Biophys Bioeng. 1981;10(1):87–114.

6. Ashley J. N., Browning C. H., Cohen J. B., Gulbransen R. The antiseptic and trypanocidal properties of some anil and styryl derivatives of 4 amino quinaldine. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character. The Royal Society London. 1933;113(783):293–299.

7. Glen W. L., Sutherland M. M. J., Wilson F. J. et al. The preparation and therapeutic properties of certain 4-substituted quinoline derivatives. Journal of the Chemical Society (Resumed). Royal Society of Chemistry. 1939:489–492.

8. Browning C. H., Cohen J. B., Ellingworth S., Gulbransen R. The antiseptic properties of the amino derivatives of styryl and anil quinoline. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character. The Royal Society London. 1926; 100(703):293–325.

9. Hughes B., Bates A. L., Bahner C. T., Lewis M. R. Regression of Transplanted Rat Lymphoma No. 8 Following Oral Administration of Either 4-(p-Dimethylaminostyryl) quinoline Methiodide or Methochloride. Proceedings of the Society for Experimental Biology and Medicine. SAGE Publications Sage UK: London, England, 1955; 88(2):230–232.

10. Bahner C. T., Pace E. S., Prevost R. Quaternary salts of styryl pyridines and quinolines. J Am Chem Soc. ACS Publications. 1951;73(7):3407–3408.

11. Gutsulyak B. M. Biological Activity of Quinolinium Salts. Russian Chemical Reviews. 1972;41(2):187–202.

12. Fortuna C. G., Barresi V., Bonaccorso C. et al. Design, synthesis and in vitro antitumour activity of new heteroaryl ethylenes. Eur J Med Chem. 2012;47:221–227.

13. Barresi V., Bonaccorso C., Consiglio G. et al. Modeling, design and synthesis of new heteroaryl ethylenes active against the MCF-7 breast cancer cell-line. Mol Biosyst. The Royal Society of Chemistry. 2013;9(10):2426–2429.

14. Bongiorno D., Musso N., Bonacci P. G. et al. Heteroaryl-ethylenes as new lead compounds in the fight against high priority bacterial strains. Antibiotics. MDPI, 2021; 10(9):1034.

15. Bivona D. A., Mirabile A., Bonomo C. et al. Heteroaryl­ethylenes as new effective agents for high priority gram­positive and gram­negative bacterial clinical isolates. Antibiotics. 2022;11(6):767.

16. Xie X., Zuffo M., Teulade-Fichou M. P., Granzhan A. Identification of optimal fluorescent probes for G-quadruplex nucleic acids through systematic exploration of monoAnd distyryl dye libraries. Beilstein Journal of Organic Chemistry. Beilstein­Institut Zur Forderung der Chemischen Wissenschaften. 2019;15:1872–1889.

17. Long W., Zheng B. X., Huang X. H. et al. Molecular recognition and imaging of human telomeric G­Quadruplex DNA in live cells: a systematic advancement of thiazole orange scaffold to enhance binding specificity and inhibition of gene expression. J Med Chem. 2021;64(4):2125–2138.

18. Sucunza D., Cuadro A. M., Alvarez-Builla J., Vaquero J. J. Recent Advances in the Synthesis of Azonia Aromatic Heterocycles. J Org Chem. 2016;81(21):10126–10135.

19. Krey A. K., Hahn F. E. Berberine: Complex with DNA. Science (1979). 1969;166(3906):755–757.

20. Bhadra K., Maiti M., Kumar G. S. DNA-binding cytotoxic alkaloids: comparative study of the energetics of binding of berberine, palmatine, and coralyne. DNA Cell Biol. 2008; 27(12):675–685.

21. Bazzicalupi C., Ferraroni M., Bilia A. R. et al. The crystal structure of human telomeric DNA complexed with berberine: an interesting case of stacked ligand to G­tetrad ratio higher than 1:1. Nucleic Acids Res. 2013;41(1): 632–638.

22. Molina A., Vaquero J. J., Garcia-Navio J. L. et al. Synthesis and DNA Binding Properties of γ-Carbolinium Derivatives and Benzologues. J Org Chem. 1996;61(16):5587–5599.

23. Molina A., Vaquero J. J., García-Navio J. L. et al. Azonia derivatives of the γ-carboline system. A new class of DNA intercalators. Bioorg Med Chem Lett. Pergamon, 1996;6(13):1453–1456.

24. Ihmels H., Faulhaber K., Vedaldi D. et al. Intercalation of organic dye molecules into double-stranded DNA. Part 2: the annelated quinolizinium ion as a structural motif in DNA intercalators. Photochem Photobiol. Wiley. 2005; 81(5):1107–1115.

25. Prasad P., Khan I., Sasmal P. K. et al. Planar triazinium cations from vanadyl-mediated ring cyclizations: the thiazole species for efficient nuclear staining and photocytotoxicity. Dalton Transactions. The Royal Society of Chemistry. 2013; 42(13):4436–4449.

26. Pithan P. M., Decker D., Druzhinin S. I. et al. 8-Styryl-substituted coralyne derivatives as DNA binding fluorescent probes. RSC Adv. 2017;7(18):10660–10667.

27. Sha X. L., Yang X. Z., Wei X. R. et al. A mitochondria/ lysosome-targeting fluorescence probe based on azonia-cyanine dye and its application in nitroreductase detection. Sens Actuators B Chem. Elsevier. 2020;307:127653.

28. Chen Y., Wei X. R., Sun R. et al. The application of azonia-cyanine dyes for nucleic acids imaging in mitochondria. Sens Actuators B Chem. Elsevier. 2019;281: 499–506.

29. Sha X. L., Niu J. Y., Sun R. et al. Synthesis and optical properties of cyanine dyes with an aromatic azonia skeleton. Organic Chemistry Frontiers. The Royal Society of Chemistry. 2018;5(4):555–560.

30. Suárez R. M., Bosch P., Sucunza D. et al. Targeting DNA with small molecules: a comparative study of a library of azonia aromatic chromophores. Org Biomol Chem. 2015; 13(2):527–538.

31. Bosch P., García V., Bilen B. S. et al. Imidazopyridinium cations: A new family of azonia aromatic heterocycles with applications as DNA intercalators. Dyes and Pigments. 2017;138:135–146.

32. Chuiguk V. A., Rudnik I. A. Mesoionic 1,2,4-triazolo[5?,1??3,4]-1,2,4-triazolo[1,5-a]-pyrimidines. Chem Heterocycl Compd (N Y). 1982;18(7):762–762.

33. De Jong W. H., Borm P. J. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine. 2008; 3(2):133.

34. Aslan B., Ozpolat B., Sood A. K., Lopez-Berestein G. Nanotechnology in cancer therapy. J Drug Target. 2013; 21(10):904–913.

35. Roger E., Lagarce F., Garcion E., Benoit J.-P. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine. 2010;5(2):287–306.

36. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6(9):688–701.

37. Vega-Villa K. R., Takemoto J. K., Yáñez J. A. et al. Clinical toxicities of nanocarrier systems. Adv Drug Deliv Rev. 2008;60(8):929–938.

38. Rihova B., Kubackova K. Clinical Implications of N­(2­Hydroxypropyl)Methacrylamide Copolymers. Curr Pharm Biotechnol. 2003;4(5):311–322.

39. O’Brien M. E. R., Wigler N., Inbar M. et al. Reduced cardiotoxicity and comparable efficacy in a phase IIItrial of pegylated liposomal doxorubicin HCl(CAELYXTM/Doxil®) versus conventional doxorubicin forfirst-line treatment of metastatic breast cancer. Annals of Oncology. 2004;15(3):440–449.

40. Pillai G. Nanomedicines for Cancer Therapy: An Update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci. 2014;1(2).

41. Stinchcombe T. E. Nanoparticle albumin-bound paclitaxel: a novel cremphor­EL ® ­Free formulation of paclitaxel. Nanomedicine. 2007;2(4):415–423.

42. Xu R., Fisher M., Juliano R. L. Targeted albumin-based nanoparticles for delivery of amphipathic drugs. Bioconjug Chem. 2011;22(5):870–878.

43. Ma N., Liu J., He W. et al. Folic acid-grafted bovine serum albumin decorated graphene oxide: An efficient drug carrier for targeted cancer therapy. J Colloid Interface Sci. Academic Press Inc. 2017;490:598–607.

44. Wang Y., Wu C. Site-specific conjugation of polymers to proteins. Biomacromolecules. 2018;19(6):1804–1825.

45. Eisele K., Gropeanu R., Musante A. et al. Tailored Albumin­based copolymers for receptor­mediated delivery of perylenediimide guest molecules. Macromol Rapid Commun. 2010;31(17):1501–1508.

46. Kopeckova K., Eckschlager T., Sirc J. et al. Nanodrugs used in cancer therapy. Biomedical Papers. 2019;163(2): 122–131.


Review

For citations:


Paponov B.V., Shemchuk O.S., Maistrenko D.N., Molchanov O.E., Sharoyko V.V., Semenov K.N. Thiazolopyrimidinium systems with a quaternized nitrogen atom as promising anticancer agents. The Scientific Notes of the Pavlov University. 2024;31(2):10-18. (In Russ.) https://doi.org/10.24884/1607-4181-2024-31-2-10-18

Views: 211


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-4181 (Print)
ISSN 2541-8807 (Online)