Preview

The Scientific Notes of the Pavlov University

Advanced search

Correlation of laboratory markers of hemostatic system activation with concentration and size of plasma extracellular microparticles in patients with COVID-19

https://doi.org/10.24884/1607-4181-2022-29-1-28-36

Abstract

Introduction. In recent years, much attention has been paid to the study of extracellular microparticles (microvesicles and exosomes) and their role in the pathogenesis of human diseases.

The objective of this study was to determine the number and size of plasma extracellular microparticles (PEMP) in patients with severe and extremely severe COVID-19 and correlate these data with the markers of hemostasis activation, inflammation, and tissue damage.

Methods and Materials. The study included 29 patients with severe and extremely severe COVID-19. Concentration and size of PEMP were determined by nanoparticle trajectory analysis (NTA). All patients underwent the complete blood count and the thromboelastometry (TEM). Hemostatic, biochemical, and immunological parameters were assessed including fibrinogen, prothrombin time, activated partial thromboplastin time, D-dimer, C-reactive protein, lactate dehydrogenase, procalcitonin, von Willebrand factor antigen, interleukin 6, and interleukin 18.

Results. There were 14 patients (48.3 %) discharged from the ICU with improvement (group 1— survived patients), and 15 patients (51.7 %) with lethal outcomes (group 2 — lethal outcome); the PEMP concentration did not differ between these groups. In group 2, there were heterogeneity of PEMP population, and a tendency to the larger PEMP size (p=0.074). In all patients, the PEMP concentration correlated negatively with both prothrombin time and the number of large platelets; the size of PEMP correlated negatively with the level of von Willebrand factor antigen, and positively with the fibrinogen. In group 1, the PEMP concentration had a direct correlation with both the level of interleukin 18 and maximum clot lysis in TEM; the PEMP size had a direct correlation with the maximum clot lysis in TEM and an inverse correlation with both the level of procalcitonin and maximum clot density in TEM.

Conclusion. Our study confirms the importance of the process of extracellular microparticles formation in the COVID-19 pathogenesis. Our findings are consistent with the hypothesis that the parameters of PEMP population can be predictive biomarkers of the COVID-19 severity.

About the Authors

O. V. Sirotkina
Pavlov University; Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute»; Almazov National Medical Research Centre
Russian Federation

Olga V. Sirotkina - Dr. of Sci. (Biol.), Senior Research Fellow of the Department of Molecular, Genetic, and Nanobiological Technologies, Pavlov University; Leading Research Fellow of the Laboratory of Human Molecular Genetics, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute»; Professor of Department of Laboratory Medicine and Genetics, Almazov National Medical Research Centre.

Saint Petersburg; Gatchina.


Competing Interests:

There is no conflict of interest



A. S. Ulitina
Pavlov University
Russian Federation

Anna S. Ulitina - Cand. of Sci. (Med.), Senior Research Fellow of the Department of Molecular, Genetic, and Nanobiological Technologies, Pavlov University.

6-8, L'va Tolstogo str., Saint Petersburg, 197022.


Competing Interests:

There is no conflict of interest



D. G. Kulabukhova
Pavlov University; Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute»
Russian Federation

Daria G. Kulabukhova - Research Assistant of the Laboratory of Human Molecular Genetics, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute»; Junior Research Fellow of the Department of Molecular, Genetic, and Nanobiological Technologies, Pavlov University.

Gatchina; Saint Petersburg.


Competing Interests:

There is no conflict of interest



M. A. Nikolaev
Pavlov University; Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute»
Russian Federation

Mikhail A. Nikolaev - Junior Research Fellow of the Laboratory of Human Molecular Genetics, Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre «Kurchatov Institute»; Junior Research Fellow of the Department of Molecular, Genetic, and Nanobiological Technologies, Pavlov University.

Gatchina; Saint Petersburg.


Competing Interests:

There is no conflict of interest



A. D. Izyumchenko
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute»
Russian Federation

Artem D. Izumchenko - Senior Laboratory Assistant of the Laboratory of Human Molecular Genetics, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute».

Gatchina.


Competing Interests:

There is no conflict of interest



L. A. Garaeva
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute»
Russian Federation

Luiza A. Garaeva - Junior Research Fellow of the Laboratory of Protein Biosynthesis, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute».

Gatchina.


Competing Interests:

There is no conflict of interest



I. V. Shlyk
Pavlov University
Russian Federation

Irina V. Shlyk - Dr. of Sci. (Med.), Professor of Anesthesiology and Intensive Care Department, Deputy Head of Research Clinical Center of Anesthesiology and Intensive Care, Deputy Head Physician of University Clinic in Anesthesiology and Intensive Care, Pavlov University.

Saint Petersburg.


Competing Interests:

There is no conflict of interest



E. G. Gavrilova
Pavlov University
Russian Federation

Elena G. Gavrilova - Cand. of Sci. (Med.), Associate Professor of Anesthesiology and Intensive Care Department, Head of Anesthesiology and Intensive Care Department № 2 of Research Clinical Center of Anesthesiology and Intensive Care, Pavlov University.

Saint Petersburg.


Competing Interests:

There is no conflict of interest



Yu. S. Polushin
Pavlov University
Russian Federation

Yury S. Polushin - Academician of the Russian Academy of Sciences, Professor, Dr. of Sci. (Med.), Vice-Rector for Research, Head of Anesthesiology and Intensive Care Department, Head of Research Clinical Center of Anesthesiology and Intensive Care, Pavlov University.

Saint Petersburg.


Competing Interests:

There is no conflict of interest



S. N. Pchelina
Pavlov University; Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute»
Russian Federation

Sofya N. Pchelina - Dr. of Sci (Biol.), Head of the Department of Molecular, Genetic, and Nanobiological Technologies, Pavlov University; Head of the Laboratory of Human Molecular Genetics, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute».

Saint Petersburg; Gatchina.


Competing Interests:

There is no conflict of interest



References

1. Kalluri R., LeBleu V. S. The biology, function, and biomedical applications of exosomes // Science 2020; 367(6478):E6977. Doi: 10.1126/science.aau6977.

2. Hassanpour M., Rezaie J., Nouri M., Panahi Y. The role of extracellular vesicles in COVID-19 virus infection // Infection, Genetics and Evolution. 2020;(85):104422. Doi: 10.1016/j.meegid.2020.104422.

3. Nomura S., Taniura T., Ito T. Extracellular Vesicle-Related Thrombosis in Viral Infection // Int. J. Gen. Med. 2020;(13):559-568. Doi: 10.2147/IJGM.S265865.

4. Bari E., Ferrarotti I., Saracino L., Perteghella S., Torre M. L., Corsico A. G. Mesenchymal Stromal Cell Secretome for Severe COVID-19 Infections: Premises for the Therapeutic Use // Cells. 2020;9(4):924. Doi: 10.3390/cells9040924.

5. Bulut O., GUrsel i. Mesenchymal stem cell derived extracellular vesicles: promising immunomodulators against autoimmune, autoinflammatory disorders and SARS-CoV-2 infection // Turk. J. Biol. 2020;44(3):273-282. Doi: 10.3906/biy-2002-79.

6. Sengupta V., Sengupta S., Lazo A., Woods P., Nolan A., Bremer N. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells as Treatment for Severe COVID-19 // Stem Cells Dev. 2020;29(12):747-754. Doi: 10.1089/scd.2020.0080.

7. Sirotkina O. V., Ermakov A. I., Gaykovaya L. B., Kud-lay D. A., Vavilova T. V. Microparticles of blood cells in patients with COVID-19 as a marker of activation of the hemostasis system // Thrombosis, hemostasis and rheology Trombos, hemostas i reologiya. 2020;(4):35-40. (In Russ.).

8. Sirotkina O. V., Ermakov A. I., Zhilenkova Yu. I., Zolotova E. A., Kudlay D. A., Vavilova T. V., Gaykovaya L. B. Dynamics of microvesicle formation in blood in patients with COVID-19 at different stages of the disease // Preventive and clinical medicine. 2021;4(81):68-74. (In Russ.). Doi: 10.47843/2074-9120_2021_4_68.eng.

9. Colling M. E., Kanthi Y. COVID-19-associated coagulopathy: An exploration of mechanisms // Vascular Medicine. 2020;25(5):471-478. Doi: 10.1177/1358863X20932640

10. Budaj M., Poljak Z., Duris I., Kasko M., Imrich R., Kopani M., Maruscakova L., Hulm I. Microparticles: a component of various diseases // Pol. Arch. Med. Wewn. 2012; 122(1):24-29. Doi: 10.20452/pamw.1489.

11. Stahl P. D., Raposo G. Extracellular Vesicles: Exosomes and Microvesicles, Integrators of Homeostasis // Physiology (Bethesda). 2019;34(3):169-177. Doi: 10.1152/physiol.00045.2018.

12. Jin X., Duan Y., Bao T., Gu J., Chen Y., Li Y., Mao S., Chen Y., Xie W. The values of coagulation function in COVID-19 patients // PLoS One. 2020;15(10):E0241329. Doi: 10.1371/journal.pone.0241329.

13. Thery C., Amigorena S., Raposo G., Clayton A. Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids // Current protocols in cell biology. 2006;3(3):22. Doi: 10.1002/0471143030.cb0322s30

14. Karimi S. M., Niazkar H. R., Rad F. COVID-19 and hematology findings based on the current evidences: A puzzle with many missing pieces // Int. J. Lab. Hematol. 2021; 43:(2):160-168. Doi: 10.1111/ijlh.13412.

15. Gong J., Ou J., Qiu X., Jie Y., Chen Y., Yuan L., Cao J., Tan M., Xu W., Zheng F., Shi Y., Hu B. A Tool to Early Predict Severe Corona Virus Disease 2019 (COVID-19): A Multicenter Study using the Risk Nomogram in Wuhan and Guangdong, China // Clin Infect Dis. 2020:443. Doi: 10.1093/cid/ciaa443.

16. Mo P., Xing Y., Xiao Y., Deng L., Zhao Q., Wang H., Xiong Y., Cheng Z., Gao S., Liang K., Luo M., Chen T., Song S., Ma Z., Chen X., Zheng R., Cao Q., Wang F., Zhang Y. Clinical Characteristics of Refractory Coronavirus Disease 2019 in Wuhan, China // Clinical Infectious Diseases. 2021; 73(11):E4208-E4213. Doi: 10.1093/cid/ciaa270.

17. Henry B. M., Aggarwal G., Wong J., Benoit S., Vikse J., Plebani M., Lippi G. Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: A pooled analysis // Am J Emerg Med. 2020; 38(9):1722-1726. Doi: 10.1016/j.ajem.2020.05.073

18. Bartziokas K., Kostikas K. Lactate dehydrogenase, COVID-19 and mortality // Med Clin (Engl Ed). 2021; 156(1):37. Doi: 10.1016/j.medcle.2020.07.017

19. Lippi G., Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-anal-ysis // Clin Chim Acta. 2020;(505):190-191. Doi: 10.1016/j.cca.2020.03.004.

20. Babaei G., Zare N., Mihanfar A., Ansari M. H. K. Exosomes and COVID-19: challenges and opportunities // Comp Clin Path. 2022:1-8. Doi: 10.1007/s00580-021-03311-3.

21. Krishnamachary B., Cook C., Spikes L., Chalise P., Dhillon N. K. The Potential Role of Extracellular Vesicles in COVID-19 Associated Endothelial injury and Pro-inflammation. medRxiv. 2020;08(27):20182808. Doi: 10.1101/2020.08.27.20182808.

22. Sun B., Tang N., Peluso M. J., Iyer N. S., Torres L., Donatelli J. L., Munter S. E., Nixon C. C., Rutishauser R. L., Rodriguez-Barraquer I., Greenhouse B., Kelly J. D., Martin J. N., Deeks S. G., Henrich T. J., Pulliam L. Characterization and Biomarker Analyses of Post-COVID-19 // Complications and Neurological Manifestations. Cells. 2021;10(2):386. Doi: 10.3390/cells10020386.

23. Barberis E., Vanella V. V., Falasca M., Caneapero V., Cappellano G., Raineri D., Ghirimoldi M., De Giorgis V., Puricelli C., Vaschetto R., Sainaghi P.P., Bruno S., Sica A., Dianzani U., Rolla R., Chiocchetti A., Cantaluppi V., Baldan-zi G., Marengo E., Manfredi M. Circulating Exosomes Are Strongly Involved in SARS-CoV-2 Infection // Front. Mol. Biosci. 2021;(8):632290. Doi: 10.3389/fmolb.2021.632290. eCollection 2021

24. Fujita Y., Hoshina T., Matsuzaki J., Yoshioka Y., Kad-ota T., Hosaka Y., Fujimoto S., Kawamoto H., Watanabe N., Sawaki K., Sakamoto Y., Miyajima M., Lee K., Nakaharai K., Horino T., Nakagawa R., Araya J., Miyato M., Yoshida M., Kuwano K., Ochiya T. Early prediction of COVID-19 severity using extracellular vesicle COPB2 // J. Extracell. Vesicles. 2021;10(8):E12092. Doi: 10.1002/jev2.12092.


Review

For citations:


Sirotkina O.V., Ulitina A.S., Kulabukhova D.G., Nikolaev M.A., Izyumchenko A.D., Garaeva L.A., Shlyk I.V., Gavrilova E.G., Polushin Yu.S., Pchelina S.N. Correlation of laboratory markers of hemostatic system activation with concentration and size of plasma extracellular microparticles in patients with COVID-19. The Scientific Notes of the Pavlov University. 2022;29(1):28-36. (In Russ.) https://doi.org/10.24884/1607-4181-2022-29-1-28-36

Views: 425


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-4181 (Print)
ISSN 2541-8807 (Online)