Mutations in the genes of lysosomal storage diseases as a risk factor for the development of Parkinson’s disease
https://doi.org/10.24884/1607-4181-2025-32-1-52-58
Abstract
Introduction. The accumulation of neurotoxic forms of alpha-synuclein protein in brain tissues plays a key role in the pathogenesis of Parkinson’s disease (PD). In this case, lysosome dysfunction is considered as one of the possible causes of alpha-synuclein accumulation in cells. The commonality of the pathogenesis of PD and lysosomal storage diseases (LSD) is discussed. Mutations in two genes, GBA1 and SMPD1, leading to the development of Gaucher and Niemann-Pick А/В diseases, respectively, are associated with a high risk of PD development. The contribution of rare variants in other LSD genes is discussed.
The objective of this study was to assess the association of rare gene variants of lysosomal storage diseases and Parkinson’s disease in the North-Western region of Russia.
Methods and materials. An analysis of data obtained as a result of massive parallel sequencing of 44 genes associated with lysosomal storage diseases was carried out in 496 patients with PD and 401 individuals in the control group.
Results.The study revealed a statistically significant difference in the frequency of occurrence of pathogenic and likely pathogenic variants of the LSD genes among patients with PD compared to the control group (p<0.05). An association of pathogenic and opportunistic rare variants of the ARSA and SGSH genes with an increased risk of PD development was revealed.
Conclusion. The obtained data confirm the role of rare variants of the LSD genes in PD pathogenesis.
Keywords
About the Authors
A. K. EmelianovRussian Federation
Emelianov Anton K., Cand. of Sci. (Biol.), Senior Research Fellow of the Laboratory of Human Molecular Genetics of the Department of Molecular and Radiation Biophysics; Senior Research Fellow of the Laboratory of Medical Genetics of the Department of Molecular Genetic and Nanobiological Technologies
1, mkr. Orlova roshcha, Gatchina, Leningradskaya Oblast, 188300
6-8, L’va Tolstogo str., Saint Petersburg, 197022
M. V. Beletskaya
Russian Federation
Beletskaya Mariia V., Postgraduate Student of the Department of Neurology
6-8, L’va Tolstogo str., Saint Petersburg, 197022
K. A. Senkevich
Russian Federation
Senkevich Konstantin A., Cand. of Sci. (Med.), Junior Research Fellow of the Laboratory of Medical Genetics of the Department of Molecular Genetic and Nanobiological Technologies
6-8, L’va Tolstogo str., Saint Petersburg, 197022
A. O. Lavrinova
Russian Federation
Lavrinova Anna O., Junior Research Fellow of the Laboratory of Human Molecular Genetics of the Department of Molecular and Radiation Biophysics
1, mkr. Orlova roshcha, Gatchina, Leningradskaya Oblast, 188300
A. A. Tyurin
Russian Federation
Tyurin Aleksandr A., Student
6-8, L’va Tolstogo str., Saint Petersburg, 197022
I. V. Miliukhina
Russian Federation
Miliukhina Irina V., Cand. of Sci. (Med.), Head of the Department of Neurology № 2, Head of the Scientific and Clinical Center for Neurodegenerative Diseases and Botulinum Therapy
12a, Academician Pavlov str., Saint Petersburg, 197022
A. A. Timofeeva
Russian Federation
Timofeeva Alla A., Cand. of Sci. (Med.), Associate Professor of the Department of Neurology, Head of the Center for the Treatment of Extrapyramidal Diseases
6-8, L’va Tolstogo str., Saint Petersburg, 197022
A. V. Amelin
Russian Federation
Amelin Aleksandr V., Dr. of Sci. (Med.), Professor, Head of the Department of General Neurology, Research Institute of Neurology
6-8, L’va Tolstogo str., Saint Petersburg, 197022
S. N. Pchelina
Russian Federation
Pchelina Sofia N., Dr. of Sci. (Biol.), Head of the Laboratory of Human Molecular Genetics of the Department of Molecular and Radiation Biophysics; Head of the Department of Molecular Genetic and Nanobiological Technologies
1, mkr. Orlova roshcha, Gatchina, Leningradskaya Oblast, 188300
6-8, L’va Tolstogo str., Saint Petersburg, 197022
References
1. Lee A., Gilbert R. M. Epidemiology of Parkinson Disease // Neurol Clin. 2016;34(4):955–65.
2. Dickson D. W., Braak H., Duda J. E. et al. Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria // Lancet Neurol. 2009;8(12):1150–7.
3. Левин О. С., Федорова Н. В. Болезнь Паркинсона. Издательство МЕДпресс-информ. 2017;1(1):1–384.
4. Bieri G., Gitler A. D., Brahic M. Internalization, axonal transport and release of fibrillar forms of alpha-synuclein // Neurobiol Dis. 2018;109(Pt B):219–25.
5. Schwarzman A. L., Senkevich K. A., Emelyanov A. K., Pchelina S. N. Prion Properties of Alpha-Synuclein // Mol Biol (Mosk). 2019;53(3):380–7.
6. Danzer K. M., Krebs S. K., Wolff M. et al. Seeding induced by alpha-synuclein oligomers provides evidence for spreading of alpha-synuclein pathology // J Neurochem. 2009;111(1):192–203.
7. Day J. O., Mullin S. The Genetics of Parkinson’s Disease and Implications for Clinical Practice // Genes. 2021;12:1006.
8. Emelyanov A. K., Usenko T. S., Tesson C. et al. Mutation analysis of Parkinson’s disease genes in a Russian data set // Neurobiol Aging. 2018;71:267.e7–267.e10.
9. Pchelina S. N., Ivanova O. N., Emel’ianov A. K., Iakimovskiĭ A. F. Clinical features of LRRK2-associated Parkinson’s disease // S. S. Korsakov Journal of Neurology and Psychiatry. 2011;111(12):56–62. (In Russ.).
10. Lesage S., Anheim M., Condroyer C. et al. Large-scale screening of the Gaucher’s disease-related glucocerebrosidase gene in Europeans with Parkinson’s disease // Hum Mol Genet. 2011;20(1):202–10.
11. Balestrino R., Schapira A. H. V. Parkinson disease // Eur J Neurol. 2020;27(1):27–42.
12. Hertz E., Chen Y., Sidransky E. Gaucher disease provides a unique window into Parkinson disease pathogenesis // Nat Rev Neurol. 2024;20(9):526–40.
13. Pchelina S., Emelyanov A., Baydakova G. et al. Oligomeric α-synuclein and glucocerebrosidase activity levels in GBA-associated Parkinson’s disease // Neurosci Lett. 2017;636.
14. Nuzhnyi E., Emelyanov A., Boukina T. et al. Plasma oligomeric alpha-synuclein is associated with glucocerebrosidase activity in Gaucher disease // Mov Disord. 2015;30(7):989–91.
15. Pchelina S. N., Nuzhnyi E. P., Emelyanov A. K. et al. Increased plasma oligomeric alpha-synuclein in patients with lysosomal storage diseases // Neurosci Lett. 2014;583: 188–93.
16. Senkevich K., Gan-Or Z. Autophagy lysosomal pathway dysfunction in Parkinson’s disease; evidence from human genetics // Parkinsonism Relat Disord. 2020;73:60–71.
17. Robak L. A., Jansen I. E., Rooij J. van et al. Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease // Brain. 2017;140(12):3191–203.
18. Zhao Y. W., Pan H. X., Liu Z. et al. The Association Between Lysosomal Storage Disorder Genes and Parkinson’s Disease: A Large Cohort Study in Chinese Mainland Population // Front Aging Neurosci. 2021;13:749109.
19. Senkevich K., Beletskaia M., Dworkind A. et al. Association of Rare Variants in ARSA with Parkinson’s Disease // Mov Disord. 2023;38(10):1806–12.
20. Senkevich K., Zorca C. E., Dworkind A. et al. GALC variants affect galactosylceramidase enzymatic activity and risk of Parkinson’s disease // Brain. 2023;146(5):1859–72.
21. Hughes A. J., Daniel S. E., Kilford L. et al. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases // J Neurol Neurosurg Psychiatry. 1992;55(3):181.
22. Postuma R. B., Berg D., Stern M. et al. MDS clinical diagnostic criteria for Parkinson’s disease // Mov Disord. 2015;30(12):1591–601.
23. Maniatis T., Fritsch E., Sambrook D. Methods of genetic engineering : Molecular cloning // World. 1984;(1):479. (In Russ.).
24. Wang K., Li M., Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data // Nucleic Acids Res. 2010; 38(16):e164.
25. Kircher M., Witten D. M., Jain P. et al. A general framework for estimating the relative pathogenicity of human genetic variants // Nat Genet. 2014;46(3):310–5.
26. Kopanos C., Tsiolkas V., Kouris A. et al. VarSome: the human genomic variant search engine // Bioinformatics. 2019;35(11):1978–80.
27. Lee S., Emond M. J., Bamshad M. J. et al. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies // Am J Hum Genet. 2012;91(2):224–37.
28. Lee J. S., Kanai K., Suzuki M. et al. Arylsulfatase A, a genetic modifier of Parkinson’s disease, is an α-synuclein chaperone // Brain. 2019;142(9):2845–59.
29. Makarious M. B., Lake J., Pitz V. et al. Large-scale rare variant burden testing in Parkinson’s disease // Brain. 2023;146(11):4622–32.
30. Winder-Rhodes S. E., Garcia-Reitböck P., Ban M. et al. Genetic and pathological links between Parkinson’s disease and the lysosomal disorder Sanfilippo syndrome // Mov Disord. 2012;27(2):312–5.
31. Beard H., Hassiotis S., Gai W. P. et al. Axonal dystrophy in the brain of mice with Sanfilippo syndrome // Exp Neurol. 2017;295:243–55.
32. Straniero L., Rimoldi V., Monfrini E. et al. Role of Lysosomal Gene Variants in Modulating GBA-Associated Parkinson’s Disease Risk // Mov Disord. 2022;37(6):1202–10.
33. Keyzor I., Shohet S., Castelli J. et al. Therapeutic Role of Pharmacological Chaperones in Lysosomal Storage Disorders: A Review of the Evidence and Informed Approach to Reclassification // Biomolecules. 2023;13(8):1227.
Review
For citations:
Emelianov A.K., Beletskaya M.V., Senkevich K.A., Lavrinova A.O., Tyurin A.A., Miliukhina I.V., Timofeeva A.A., Amelin A.V., Pchelina S.N. Mutations in the genes of lysosomal storage diseases as a risk factor for the development of Parkinson’s disease. The Scientific Notes of the Pavlov University. 2025;32(1):52-58. (In Russ.) https://doi.org/10.24884/1607-4181-2025-32-1-52-58