Preview

The Scientific Notes of the Pavlov University

Advanced search

Features of endocrine status in adolescents with multiple sclerosis

https://doi.org/10.24884/1607-4181-2025-32-1-43-51

Abstract

Introduction. A number of authors have shown changes of hormonal status in adults with multiple sclerosis (MS) compared to healthy volunteers. At the same time, there are few such studies in the pediatric population, conducted on small groups, with ambiguous and contradictory results, which indicates the need for further research in this area.
The objective was to determine the endocrine status features in adolescents with MS in comparison with healthy children and adult patients with MS, to assess the relationship between the levels of pituitary hormones, thyroid hormones, cortisol, sex hormones and the activity and severity of MS in adolescents and adults.
Methods and materials. The main group consisted of 33 adolescent patients with pediatric MS, the comparison group included 22 adult patients with MS, and the control group comprised 26 healthy adolescents. All participants underwent assessments for the concentrations of prolactin, follicle-stimulating hormone, luteinizing hormone, adrenocorticotropic hormone, thyroid-stimulating hormone, total and free thyroxine, triiodothyronine, cortisol, testosterone, dihydrotestosterone, estradiol, and 17-hydroxyprogesterone. In addition, clinical and MRI characteristics of the disease were evaluated in patients with MS.
Results. Prolactin levels in adult and adolescent patients with MS were definitely higher than in a control group. Adolescents with higher cortisol levels at baseline showed a lower severity of motor dysfunction (r=–0.59, p<0.001) and disability as measured by the Expanded Disability Status Scale (EDSS) (r=–0.49, p=0.004). A similar correlation was found for 17-hydroxyprogesterone: adolescents with higher levels of this hormone had less disability according to EDSS (r=–0.36, p=0.04). Adult patients with MS showed a moderate inverse correlation (r=–0.47, p=0.03) between 17-hydroxyprogesterone levels and the severity of cerebellar dysfunction. Adolescents experiencing an MS exacerbation had higher prolactin levels (p=0.04) and lower 17-hydroxyprogesterone levels (p=0.02) compared to those in remission.
Conclusion. In adolescents and adults with MS, prolactin levels were significantly higher than in a control group of healthy adolescents. For the first time, a negative correlation between the baseline levels of endogenous steroid hormones and the degree of disability in several functional systems has been demonstrated in adolescents and adults. Changes in prolactin and 17-hydroxyprogesterone levels during MS exacerbation have been observed in adolescents, suggesting that both indicators may be potential targets for developing laboratory markers for disease reactivation.

About the Authors

V. M. Lebedev
N. P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences (IHB RAS)
Russian Federation

Lebedev Valeriy M., Head of the Department of Neurology, Junior Research Fellow

12a, Academician Pavlov str., Saint Petersburg, 197022



N. A. Totolyan
N. P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences (IHB RAS); Pavlov University
Russian Federation

Totolyan Natalia A., Dr. of Sci. (Med.), Professor of the Department of Neurology

12a, Academician Pavlov str., Saint Petersburg, 197022

6-8, L’va Tolstogo str., Saint Petersburg, 197022



References

1. Gusev E. I., Boiko A. N., Stolyarov I. D. Multiple Sclerosis. Moscow: Real Taim; 2009. (In Russ.).

2. Gusev E. I. Multiple Sclerosis. Clinical guidance. Gusev E. I., Zavalishin I. A., Boiko A. N. eds. Moscow: Real Taim; 2011. (In Russ).

3. Brola W., Steinborn B. Pediatric multiple sclerosis – current status of epidemiology, diagnosis and treatment // Neurol Neurochir Pol. 2020;54(6):508–517. https://doi.org/10.5603/PJNNS.a2020.0069.

4. El’chaninova E. Yu., Smagina I. V. Pediatric multiple sclerosis // Nevrologicheskiy Zhurnal (Neurological Journal). 2017;22(2):64–71. (In Russ.). https://doi.org/10.18821/1560-9545-2017-22-2-64.

5. Deiva K. Pediatric onset multiple sclerosis // Rev Neurol. 2020;176(1–2):30–36. https://doi.org/10.1016/j.neurol.2019.02.002.

6. Fisher K., Cuascut F., Rivera V., Hutton G. Current advances in pediatric onset multiple sclerosis // Biomedicines. 2020;8(4):71. https://doi.org/10.3390/biomedicines8040071.

7. Langille M., Rutatangwa A., Francisco C. Pediatric Multiple Sclerosis: A Review // Adv Pediatr. 2019;66:209–229. https://doi.org/10.1016/j.yapd.2019.03.003.

8. Santoro J., Waltz M., Aaen G. et al. Pediatric Multiple Sclerosis Severity Score in a large US cohort // Neurology. 2020;95(13):e1844–e1853. https://doi.org/10.1212/WNL.0000000000010414.

9. Harding K. E., Liang K., Cossburn M. et al. Long-term outcome of paediatric-onset multiple sclerosis: a population-based study // J Neurol Neurosurg Psychiatry. 2013; 84(2):141–7. https://doi.org/10.1136/jnnp-2012-303996.

10. Ysrraelit M., Gaitan M., Lopez A., Correale J. Impaired hypothalamic-pituitaryadrenal axis activity in patients with multiple sclerosis // Neurology. 2008;71:1948–54. https://doi.org/10.1212/01.wnl.0000336918.32695.6b.

11. Then Bergh F., Kümpfel T., Trenkwalder C. et al. Dysregulation of the hypothalamo-pituitary-adrenal axis is related to the clinical course of MS // Neurology. 1999;53:772–7. https://doi.org/10.1212/WNL.53.4.772.

12. Murgia F., Giagnoni F., Lorefice L. et al. Sex Hormones as Key Modulators of the Immune Response in Multiple Sclerosis: A Review // Biomedicines. 2022;10(12):3107. https://doi.org/10.3390/biomedicines10123107.

13. Ysrraelit M. C., Correale J. Impact of sex hormones on immune function and multiple sclerosis development // Immunology. 2019;156(1):9–22. https://doi.org/10.1111/imm.13004.

14. Turkoglu R., Giris M., Gencer M. et al. Serum prolactin levels in multiple sclerosis, neuromyelitis optica, and clinically isolated syndrome patients // Noro Psikiyatr Ars. 2016;53:353–6. https://doi.org/10.5152/npa.2016.16979.

15. Moshirzadeh S., Ghareghozli K., Harandi A. A., Pakdaman H. Serum prolactin level in patients with relapsing-remitting multiple sclerosis during relapse // J Clin Neurosci. 2012;19:622–3. https://doi.org/10.1016/j.jocn.2011.07.032.

16. Wei W., Liu L., Cheng Z. L., Hu B. Increased plasma/ serum levels of prolactin in multiple sclerosis: a meta-analysis // Postgrad Med. 2017;129:605–10. https://doi.org/10.1080/00325481.2017.1282297.

17. Huppke B., Ellenberger D., Rosewich H. et al. Clinical presentation of pediatric multiple sclerosis before puberty // Eur J Neurol. 2014;21:441–6. https://doi.org/10.1111/ene.12327.

18. Bykova O. V., Khachatryan L. G., Goltsova N. G. et al. Serum prolactin level in patients with pediatric multiple sclerosis // New Armenian Medical Journal. 2016;10(3):58–64.

19. Wang C., Greenberg B. Pediatric multiple sclerosis: from recognition to practical clinical management // Neurol Clin. 2018;36:135–49. https://doi.org/10.1016/j.ncl.2017.08.005.

20. Abe J., Jafarpour S., Vu M. H. et al. Impact of endocrine dysregulation on disability and non-motor symptoms in pediatric onset multiple sclerosis // Front. Neurol. 2023;14:1304610. https://doi.org/10.3389/fneur.2023.1304610.

21. Thompson A. J., Banwell B. L., Barkhof F. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria // Lancet Neurol. 2018;17(2):162–173. https://doi.org/10.1016/S1474-4422(17)30470-2.

22. Krupp L. B., Tardieu M., Amato M. P. et al. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions // Mult Scler. 2013;19(10):1261–7. https://doi.org/10.1177/1352458513484547.

23. Klinicheskie rekomendacii Rasseyannyj skleroz. Vserossijskoe obshchestvo nevrologov. 2022. Accessed November 02, 2024. (In Russ.). https://cr.minzdrav.gov.ru/recomend/739_1.

24. Dedov I. I., Mel’nichenko G. A., Fadeev V. V. Endocrinology: textbook. Moscow : Litterra; 2015. (In Russ.).

25. Quality certificates of the Invitro laboratory (In Russ). URL: https://www.invitro.ru/about/(accessed 02.11.2024).

26. Evangelopoulos M. E., Nasiri-Ansari N., Kassi E. et al. Methylprednisolone stimulated gene expression (GILZ, MCL-1) and basal cortisol levels in multiple sclerosis patients in relapse are associated with clinical response // Sci ReP. 2021;11(1):19462. https://doi.org/10.1038/s41598-021-98868-y.

27. Ribbons K. A., McElduff P., Boz C. et al. Male Sex Is Independently Associated with Faster Disability Accumulation in Relapse-Onset MS but Not in Primary Progressive MS // PLoS One. 2015;10(6):e0122686.

28. Azar S. T., Yamout B. Prolactin secretion is increased in patients with multiple sclerosis // Endocr Res. 1999;25(2):207–14. https://doi.org/10.1080/07435809909066142.

29. Nicot A. Gender and sex hormones in multiple sclerosis pathology and therapy // Front Biosci (Landmark Ed). 2009;14(12):4477–515. https://doi.org/10.2741/3543.

30. Ramos-Martinez E., Ramos-Martínez I., Molina-Salinas G. et al. The role of prolactin in central nervous system inflammation // Rev Neurosci. 2021;32(3):323–340. https://doi.org/10.1515/revneuro-2020-0082. PMID: 33661585.

31. Wei W., Liu L., Cheng Z. L., Hu B. Increased plasma/ serum levels of prolactin in multiple sclerosis: a meta-analysis // Postgrad Med. 2017;129(6):605–610. https://doi.org/10.1080/00325481.2017.1282297.

32. Pereira W. L., Flauzino T., Alfieri D. F. et al. Prolactin is Not Associated with Disability and Clinical Forms in Patients with Multiple Sclerosis // Neuromolecular Med. 2020;22(1):73–80. https://doi.org/10.1007/s12017-019-08565-3.

33. Finkelsztejn A., Brooks J. B., Paschoal F. M. Jr., Fragoso Y. D. What can we really tell women with multiple sclerosis regarding pregnancy? A systematic review and meta-analysis of the literature // BJOG. 2011;118(7):790–7. https://doi.org/10.1111/j.1471-0528.2011.02931.x.

34. Gautam S., Bhattarai A., Shah S. et al. The association of multiple sclerosis with thyroid disease: A meta-analysis // Mult Scler Relat Disord. 2023;80:105103. https://doi.org/10.1016/j.msard.2023.105103.

35. Zhang M., Zhan X. L., Ma Z. Y. et al. Thyroid hormone alleviates demyelination induced by cuprizone through its role in remyelination during the remission period // Exp Biol Med (Maywood). 2015;240(9):1183–96. https://doi.org/10.1177/1535370214565975.


Supplementary files

Review

For citations:


Lebedev V.M., Totolyan N.A. Features of endocrine status in adolescents with multiple sclerosis. The Scientific Notes of the Pavlov University. 2025;32(1):43-51. (In Russ.) https://doi.org/10.24884/1607-4181-2025-32-1-43-51

Views: 92


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-4181 (Print)
ISSN 2541-8807 (Online)