Preview

The Scientific Notes of the Pavlov University

Advanced search

Clinical and immunological features of the pediatric multiple sclerosis

https://doi.org/10.24884/1607-4181-2025-32-1-59-68

Abstract

Introduction. The course of multiple sclerosis (MS) in children and adults has numerous differences, which may require the development of differentiated treatment approaches depending on the patient’s age. However, the pathogenetic basis of the above differences remains unclear. The objective was to evaluate the clinical features of pediatric MS and their relationship with the cytotoxic T-cell (Tcyt) subsets in peripheral blood.
Methods and materials. The main group consisted of 33 patients with pediatric MS of adolescent age. In the main group and the comparison group of 22 adults with MS, clinical and MRI characteristics of the disease were assessed. In the main group, as well as in 28 adults with MS and 26 healthy adolescents, the main Tcyt subsets were identified, based on the expression of CD45RA and CD62L and co-expression of chemokine receptors CCR4, CCR6, CXCR3 and CXCR5.
Results. The frequency of exacerbations and occurrence of highly active and rapidly progressing MS (HAMS) in pediatric MS was 1.5 times higher than in adults. An equivalent relationship between the severity of cerebellar disorders and HAMS was demonstrated both in the pediatric MS group and in adults. Adolescents with MS showed a significantly increased relative numbers of effector memory Tcyt expressing CCR6. For the first time, a relationship was determined between the effector Tcyt expressing CCR6 and highly active pediatric MS (p=0.04). A 2.5-fold increase of the relative numbers of CCR6-positive terminally differentiated Tcyt was found in patients with MRI activity compared to the patients in radiological remission (p=0.01). The results of ROC analysis showed high sensitivity (75.0 %) and specificity (89.7 %) of the CCR6+-positive effector memory Tcyt relative number in predicting the activity of the pediatric MS.
Conclusions. The disability level has a significant relationship with the frequency of exacerbations in both pediatric MS patients and adults, and the frequency of exacerbations in pediatric MS patients during the first years of the disease is higher than in adults. The obtained results demonstrate a higher activity of T-cell component of the immune system in patients with pediatric MS compared to adults, in particular, various effector Tcyt subsets. The relative number of CCR6-positive effector memory Tcyt above 55.4 % can be considered as a prognostic marker of HAMS in pediatric MS.

About the Authors

V. M. Lebedev
N. P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences (IHB RAS)
Russian Federation

Lebedev Valeriy M., Head of the Department of Neurology, Junior Research Fellow

12a, Academician Pavlov str., Saint Petersburg, 197022



I. V. Kudryavtsev
Institute of Experimental Medicine
Russian Federation

Kudryavtsev Igor V., Cand. of Sci. (Biol.), Headof the Laboratory of Cellular Immunology

12, Academician Pavlov str., Saint Petersburg, 197022



M. A. Irikova
N. P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences (IHB RAS); Federal Research and Clinical Center for Infectious Diseases under the Federal Medical Biological Agency
Russian Federation

Irikova Mariia A., Cand. of Sci. (Med.), Doctor of Functional Diagnostics; Federal Research Fellow of the Research Department of Neuroinfections and Organic Pathology of the Nervous System

12a, Academician Pavlov str., Saint Petersburg, 197022

9, Professora Popova str., Saint Petersburg, 197022



M. K. Serebriakova
Institute of Experimental Medicine; Herzen University
Russian Federation

Serebriakova Maria K., Research Fellow of the Laboratory of Cellular Immunology

12, Academician Pavlov str., Saint Petersburg, 197022

48, Moika Embankment, Saint Petersburg, 191186



N. A. Totolyan
N. P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences (IHB RAS); Pavlov University
Russian Federation

Totolyan Natalia A., Dr. of Sci. (Med.), Professor of the
Department of Neurology

12a, Academician Pavlov str., Saint Petersburg, 197022

6-8, L’va Tolstogo str., Saint Petersburg, 197022



References

1. Gusev E. I., Boiko A. N., Stolyarov I. D. Multiple Sclerosis. Moscow: Real Taim; 2009. (In Russ.).

2. Gusev E. I. Multiple Sclerosis. Clinical guidance. Gusev E. I., Zavalishin I. A., Boiko A. N., eds. Moscow: Real Taim; 2011. (In Russ.).

3. Ghezzi A., Baroncini D., Zaffaroni M., Comi G. Pediatric versus adult MS: similar or different? // Multiple Sclerosis and Demyelinating Disorders. 2017;2(5):1–14. https://doi.org/10.1186/s40893-017-0022-6.

4. Jeong A., Oleske D., Holman J. Epidemiology of Pediatric-Onset Multiple Sclerosis: A Systematic Review of the Literature // J Child Neurol. 2019;34(12):705–712. https://doi.org/10.1177/0883073819845827.

5. El’chaninova E. Yu., Smagina I. V. Pediatric multiple sclerosis // Nevrologicheskiy Zhurnal (Neurological Journal). 2017;22(2):64–71. (In Russ.). https://doi.org/10.18821/1560-9545-2017-22-2-64.

6. Klinicheskie rekomendacii Rasseyannyj skleroz. Vserossijskoe obshchestvo nevrologov. 2022. (In Russ.). URL: https://cr.minzdrav.gov.ru/recomend/739_1 (accessed 13.09.2024).

7. Kurtzke J. F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS) // Neurology. 1983;33(11):1444–1444. https://doi.org/10.1212/wnl.33.11.1444.

8. Stepanova A. D., Evdoshenko E. P., Shumilina M. V. et al. Validation of Russian-language version of the Expanded Disability Status Scale (EDSS) for patients with multiple sclerosis in the Russian Federation. Medical Technologies // Assessment and Choice. 2023;(1):41–49. (In Russ.). https://doi.org/10.17116/medtech20234501141.

9. Thompson A. J., Banwell B. L., Barkhof F. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria // Lancet Neurol. 2018;17(2):162–173. https://doi.org/10.1016/S1474-4422(17)30470-2.

10. Krupp L. B., Tardieu M., Amato M. P. et al. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions // Mult Scler. 2013;19(10):1261–7. https://doi.org/10.1177/1352458513484547.

11. Polman C. H., Reingold S. C., Banwell B. et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria // Ann Neurol. 2011;69(2):292–302. https://doi.org/10.1002/ana.22366.

12. Kudryavtsev I. V., Borisov A. G., Volkov A. E. et al. CD56 and CD57 expression by distinct populations of human cytotoxic T lymphocytes // Tikhookeanskiy meditsinskiy zhurnal = Pacific Medical Journal. 2015;2(60):30–35. (In Russ.).

13. Kudryavtsev I. V., Arsentieva N. A., Korobova Z. R. et al. Heterogenous CD8+ T Cell Maturation and ‘Polarization’ in Acute and Convalescent COVID-19 Patients // Viruses. 2022;14(9):1906. https://doi.org/10.3390/v14091906.

14. Skulina C., Schmidt S., Dornmair K. et al. Multiple sclerosis: brain-infiltrating CD8+ T cells persist as clonal expansions in the cerebrospinal fluid and blood // PNAS. 2004;101(8):2428–2433.

15. Serebriakova M. K., Ilves A. G., Lebedev V. M. et al. Cytotoxic T cell subsets in peripheral blood and cerebrospinal fluid from patients with multiple sclerosis // Russian Journal of Immunology. 2023;26(2):149–160. (In Russ.). https://doi.org/10.46235/1028-7221-1533-CTC.

16. Annibali V., Ristori G., Angelini D. F. et al. CD161(high)CD8+T cells bear pathogenetic potential in multiple sclerosis // Brain. 2011;134(2):542–54. https://doi.org/10.1093/brain/awq354.

17. Mexhitaj I., Nyirenda M. H., Li R. et al. Abnormal effector and regulatory T cell subsets in paediatric-onset multiple sclerosis // Brain. 2019;142(3):617–632. https://doi.org/10.1093/brain/awz017.

18. Saxena A., Martin-Blondel G., Mars L. T., Liblau R. S. Role of CD8 T cell subsets in the pathogenesis of multiple sclerosis // FEBS Lett. 2011;585(23):3758–63. https://doi.org/10.1016/j.febslet.2011.08.047.

19. Tzartos J. S., Friese M. A., Craner M. J. et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis // Am. J. Pathol. 2008;172(1):146–155.

20. Planas R., Metz I., Martin R., Sospedra M. Detailed characterization of T cell receptor repertoires in multiple sclerosis brain lesions // Front. Immunol. 2018;9:509. https://doi.org/10.3389/fimmu.2018.00509.

21. Reboldi A., Coisne C., Baumjohann D. et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE // Nat Immunol. 2009;10(5):514–23. https://doi.org/10.1038/ni.1716.

22. Yeh E. A., Chitnis T., Krupp L. et al. Pediatric multiple sclerosis // Nat Rev Neurol. 2009;5(11):621–31. https://doi.org/10.1038/nrneurol.2009.158.

23. Gorman M. P., Healy B. C., Polgar-Turcsanyi M., Chitnis T. Increased relapse rate in pediatric-onset compared with adult-onset multiple sclerosis // Arch Neurol. 2009;66(1):54–9. https://doi.org/10.1001/archneurol.2008.505.

24. Huppke B., Ellenberger D., Rosewich H. et al. Clinical presentation of pediatric multiple sclerosis before puberty // Eur J Neurol. 2014;21(3):441–6. https://doi.org/10.1111/ene.12327.

25. Menascu S., Khavkin Y., Zilkha-Falb R. et al. Clinical and transcriptional recovery profiles in pediatric and adult multiple sclerosis patients // Ann Clin Transl Neurol. 2021;8(1):81–94. https://doi.org/10.1002/acn3.51244.

26. Duignan S., Brownlee W., Wassmer E. et al. Paediatric multiple sclerosis: a new era in diagnosis and treatment // Dev Med Child Neurol. 2019;61(9):1039–1049. https://doi.org/10.1111/dmcn.14212.

27. Salehi Z., Doosti R., Beheshti M. et al. Differential Frequency of CD8+ T Cell Subsets in Multiple Sclerosis Patients with Various Clinical Patterns // PLoS One. 2016;11(7):e0159565. https://doi.org/10.1371/journal.pone.0159565.

28. Hauser S. L., Bhan A. K., Gilles F. et al. Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions // Annals of neurology. 1986;19(6):578–87. https://doi.org/10.1002/ana.410190610.

29. Zang Y. C., Li S., Rivera V. M. et al. Increased CD8+ cytotoxic T cell responses to myelin basic protein in multiple sclerosis // J Immunol. 2004;172(8):5120–7. https://doi.org/10.4049/jimmunol.172.8.5120.


Supplementary files

Review

For citations:


Lebedev V.M., Kudryavtsev I.V., Irikova M.A., Serebriakova M.K., Totolyan N.A. Clinical and immunological features of the pediatric multiple sclerosis. The Scientific Notes of the Pavlov University. 2025;32(1):59-68. (In Russ.) https://doi.org/10.24884/1607-4181-2025-32-1-59-68

Views: 80


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-4181 (Print)
ISSN 2541-8807 (Online)