Preview

The Scientific Notes of the Pavlov University

Advanced search

Review of programs for assessing the pathogenicity of genetic variants

https://doi.org/10.24884/1607-4181-2025-32-1-11-20

Abstract

Currently, molecular genetic methods play an essential role in the diagnostic process for diverse pathologies. The introduction of mass parallel sequencing has significantly increased the amount of data on DNA variants in patients with various diseases, but the clinical significance of many of these findings remains unknown. Widely used methods of variant effect evaluation include the automatic determination of the pathogenicity of variants using specialized predictors. Domestic and international guidelines for the interpretation of data obtained through mass parallel sequencing recommend the use of predictive programs to determine the clinical significance of genetic variants. However, there is a lack of detailed information about the principles and characteristics of these programs in the scientific literature. In this review, we present the basic principles that are used to evaluate the pathogenicity of variations using the example of some of the most widely used predictive programs.

About the Authors

D. S. Bug
Pavlov University
Russian Federation

Bug Dmitrii S., Junior Research Fellow, Bioinformatics Research Center of the Research Institute of Biomedicine

6-8, L’va Tolstogo str., Saint Petersburg, 197022



A. N. Narkevich
South-Ural State Medical University
Russian Federation

Narkevich Artem N., Dr. of Sci. (Med.), Associate Professor, Professor of the Department of Public Health

64, Vorovskogo str., Chelyabinsk, 454092



N. V. Petukhova
Pavlov University
Russian Federation

Petukhova Natalia V., Cand. of Sci. (Med.), Head of the Bioinformatics Research Center of the Research Institute of Biomedicine

6-8, L’va Tolstogo str., Saint Petersburg, 197022



References

1. Cook C. E., Bergman M. T., Finn R. D. et al. The European Bioinformatics Institute in 2016: Data growth and integration // Nucleic Acids Res. 2015;44(D1):D20–D26. https://doi.org/10.1093%2Fnar%2Fgkv1352.

2. Gagan J., Van Allen E. M. Next-generation sequencing to guide cancer therapy // Genome Med. 2015;7(1):80. https://doi.org/10.1186/s13073-015-0203-x.

3. Ryzhkova O. P., Kardymon O. L., Prohorchuk E. B. et al. Guidelines for the interpretation of massive parallel sequencing variants (update 2018, v2) // Medical genetics. 2019;18(2):3–23. (In Russ.).

4. Spektor M. A., Yasko L. A., Druy A. E. The interpretation of somatic genetic variants identified with high-throughput sequencing of DNA from paediatric solid tumors // Medical Genetics. 2021;20(3):3–25. (In Russ.).

5. Cooper G. M., Stone E. A., Asimenos G. et al. Distribution and intensity of constraint in mammalian genomic sequence // Genome Res. 2005;15(7):901–913. https://doi.org/10.1101/gr.3577405.

6. Garber M., Guttman M., Clamp M. et al. Identifying novel constrained elements by exploiting biased substitution patterns // Bioinformatics. 2009;25(12):i54–i62. https://doi.org/10.1093%2Fbioinformatics%2Fbtp190.

7. Pollard K. S., Hubisz M. J., Rosenbloom K. R. et al. Detection of nonneutral substitution rates on mammalian phylogenies // Genome Res. 2009;20(1):110–121. https://doi.org/10.1101/gr.097857.109.

8. Siepel A., Bejerano G., Pedersen J. S. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes // Genome Res. 2005;15(8):1034–1050. https://doi.org/10.1101/gr.3715005.

9. Adzhubei I. A., Schmidt S., Peshkin L. et al. A method and server for predicting damaging missense mutations // Nat Methods. 2010;7(4):248–249. https://doi.org/10.1038/nmeth0410-248.

10. Ashkenazy H., Abadi S., Martz E. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules // Nucleic Acids Res. 2016;44(W1):W344–W350. https://doi.org/10.1093/nar/gkw408.

11. Calabrese R., Capriotti E., Fariselli P. et al. Functional annotations improve the predictive score of human disease-related mutations in proteins // Hum. Mutat. 2009;30(8):1237–1244. https://doi.org/10.1002/humu.21047.

12. Choi Y., Sims G. E., Murphy S. et al. Predicting the Functional Effect of Amino Acid Substitutions and Indels // PLoS ONE. 2012;7(10):e46688. https://doi.org/10.1371/journal.pone.0046688.

13. Frazer J., Notin P., Dias M. et al. Disease variant prediction with deep generative models of evolutionary data // Nature. 2021;599(7883):91–95. https://doi.org/10.1038/s41586-021-04043-8.

14. Reva B., Antipin Y., Sander C. Predicting the functional impact of protein mutations: application to cancer genomics // Nucleic Acids Research. 2011;39(17):e118–e118. https://doi.org/10.1093/nar/gkr407.

15. Sim N., Kumar P., Hu J. et al. SIFT web server: predicting effects of amino acid substitutions on proteins // Nucleic Acids Research. 2012;40(W1):W452–W457. https://doi.org/10.1093/nar/gks539.

16. Capriotti E., Fariselli P. Evaluating the relevance of sequence conservation in the prediction of pathogenic missense variants // Hum Genet. 2022;141(10):1649–1658. https://doi.org/10.1007/s00439-021-02419-4.

17. Adebali O., Reznik A. O., Ory D. S. et al. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations // Genetics in Medicine. 2016;18(10):1029–1036. https://doi.org/10.1038/gim.2015.208.

18. Li W., Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences // Bioinformatics. 2006;22(13):1658–1659. https://doi.org/10.1093/bioinformatics/btl158.

19. Ng P. C. SIFT: predicting amino acid changes that affect protein function // Nucleic Acids Research. 2003;31(13):3812–3814. https://doi.org/10.1093/nar/gkg509.

20. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice // Nucl Acids Res. 2007;22(22):4673–4680. https://doi.org/10.1093/nar/22.22.4673.

21. Sievers F., Wilm A., Dineen D. et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega // Molecular Systems Biology. 2011;7(1):539. https://doi.org/10.1038/msb.2011.75.

22. Katoh K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform // Nucleic Acids Research. 2002;30(14):3059–3066. https://doi.org/10.1093/nar/gkf436.

23. Mount D. W. Using Iterative Methods for Global Multiple Sequence Alignment // Cold Spring Harb Protoc. 2009;2009(7):pdb.top44. https://doi.org/10.1101/pdb.top44.

24. Edgar R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity // BMC Bioinformatics. 2004;5(1):113. https://doi.org/10.1186/1471-2105-5-113.

25. Morgenstern B. DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment // Bioinformatics. 2002;15(3):211–218. https://doi.org/10.1093/bioinformatics/15.3.211.

26. Notredame C. SAGA: sequence alignment by genetic algorithm. Nucleic Acids Research. 2002;24(8):1515–1524. https://doi.org/10.1093%2Fnar%2F24.8.1515.

27. Sievers F., Higgins D. G. QuanTest2: benchmarking multiple sequence alignments using secondary structure prediction // Bioinformatics. 2019;36(1):90–95. https://doi.org/10.1093/bioinformatics/btz552.

28. Ng P. C., Henikoff S. Predicting Deleterious Amino Acid Substitutions // Genome Res. 2002;11(5):863–874. https://doi.org/10.1101/gr.176601.

29. Shihab H. A., Gough J., Cooper D. N. et al. Predicting the Functional, Molecular, and Phenotypic Consequences of Amino Acid Substitutions using Hidden Markov Models // Human Mutation. 2012;34(1):57–65. https://doi.org/10.1002/humu.22225.

30. Tang H., Thomas P. D. PANTHER-PSEP: predicting disease-causing genetic variants using position-specific evolutionary preservation // Bioinformatics. 2016;32(14):2230–2232. https://doi.org/10.1093/bioinformatics/btw222.

31. Glaser F., Pupko T., Paz I. et al. ConSurf: Identification of Functional Regions in Proteinsby Surface-Mapping of Phylogenetic Information // Bioinformatics. 2002;19(1):163–164. https://doi.org/10.1093/bioinformatics/19.1.163.

32. Chun S., Fay J. C. Identification of deleterious mutations within three human genomes // Genome Res. 2009;19(9):1553–1561. https://doi.org/10.1101/gr.092619.109.

33. Stone E. A., Sidow A. Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity // Genome Res. 2005;15(7):978–986. https://doi.org/10.1101/gr.3804205.

34. Tavtigian S. V. Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral // Journal of Medical Genetics. 2005;43(4):295–305. https://doi.org/10.1136/jmg.2005.033878.

35. Frazer J., Notin P., Dias M. et al. Disease variant prediction with deep generative models of evolutionary data // Nature. 2021;599(7883):91–95. https://doi.org/10.1038/s41586-021-04043-8.

36. Moles-Fernández A., Duran-Lozano L., Montalban G. et al. Computational Tools for Splicing Defect Prediction in Breast/Ovarian Cancer Genes: How Efficient Are They at Predicting RNA Alterations? // Front. Genet. 2018;9:366. https://doi.org/10.3389/fgene.2018.00366.

37. Mahmood K., Jung C., Philip G. et al. Variant effect prediction tools assessed using independent, functional assay-based datasets: implications for discovery and diagnostics // Hum Genomics. 2017;11(1):10. https://doi.org/10.1186/s40246-017-0104-8.

38. Pollard K. S., Salama S. R., Lambert N. et al. An RNA gene expressed during cortical development evolved rapidly in humans // Nature. 2006;443(7108):167–172. https://doi.org/10.1038/nature05113.

39. Rao C. R. Score Test: Historical Review and Recent Developments / Eds. Balakrishnan N., Nagaraja H. N., Kannan N. Advances in Ranking and Selection, Multiple Comparisons, and Reliability. – Boston, MA: Birkhäuser; 2005. – P. 3–20. https://doi.org/http://dx.doi.org/10.1007/0-8176-4422-9_1.

40. Siepel A., Pollard K. S., Haussler D. New Methods for Detecting Lineage-Specific Selection / Eds. Apostolico A. et al. Research in Computational Molecular Biology. –Berlin, Heidelberg: Springer Berlin Heidelberg; 2006. – P. 190–205. https://doi.org/10.1007/11732990_17.

41. Kircher M., Witten D. M., Jain P. et al. A general framework for estimating the relative pathogenicity of human genetic variants // Nat Genet. 2014;46(3):310–315. https://doi.org/10.1038/ng.2892.

42. Quang D., Chen Y., Xie X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants // Bioinformatics. 2014;31(5):761–763. https://doi.org/10.1093/bioinformatics/btu703.

43. Ionita-Laza I., McCallum K., Xu B. et al. A spectral approach integrating functional genomic annotations for coding and noncoding variants // Nat Genet. 2016;48(2):214–220. https://doi.org/10.1038/ng.3477.

44. Shihab H. A., Rogers M. F., Gough J. et al. An integrative approach to predicting the functional effects of non-coding and coding sequence variation // Bioinformatics. 2015;31(10):1536–1543. https://doi.org/10.1093/bioinformatics/btv009.

45. Dong C., Wei P., Jian X. et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies // Human Molecular Genetics. 2015;24(8):2125–2137. https://doi.org/10.1093/hmg/ddu733.

46. Jagadeesh K. A., Wenger A. M., Berger M. J. et al. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity // Nat Genet. 2016;48(12):1581–1586. https://doi.org/10.1038/ng.3703.

47. Ioannidis N. M., Rothstein J. H., Pejaver V. et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants // The American Journal of Human Genetics. 2016;99(4):877–885. https://doi.org/10.1016/j.ajhg.2016.08.016.

48. Koonin E. V. Orthologs, Paralogs, and Evolutionary Genomics // Annu. Rev. Genet. 2005;39(1):309–338. https://doi.org/10.1146/annurev.genet.39.073003.114725.

49. Han J., Batey S., Nickson A. A. et al. The folding and evolution of multidomain proteins // Nat Rev Mol Cell Biol. 2007;8(4):319–330. https://doi.org/10.1038/nrm2144.

50. Lipton Z. C. The mythos of model interpretability // Queue.2020;16(3):31–57. https://doi.org/10.48550/arXiv.1606.03490.


Review

For citations:


Bug D.S., Narkevich A.N., Petukhova N.V. Review of programs for assessing the pathogenicity of genetic variants. The Scientific Notes of the Pavlov University. 2025;32(1):11-20. (In Russ.) https://doi.org/10.24884/1607-4181-2025-32-1-11-20

Views: 107


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-4181 (Print)
ISSN 2541-8807 (Online)