Cytotoxic and cytostatic activity of orcinol-type depsides of lichens
https://doi.org/10.24884/1607-4181-2024-31-3-26-35
Abstract
Lichens synthesize unique secondary metabolites, most of which are not found in other living organisms. More than 800 such metabolites are known, which can be found in various parts of the lichen thallus. Typically, their content varies from 1 to 6 % of the dry weight of the thallus, but sometimes can reach 20 %. In recent years, interest in these metabolites has increased due to their biological and pharmacological activities, including antioxidant, cytotoxic, antimicrobial, anti-inflammatory and analgesic properties. This makes them promising sources of new pharmaceutical substances, although the molecular cellular mechanisms of their action require further study. The most numerous classes of lichen metabolites are depsides, formed via the acetate-polymalonate pathway. They are conjugated from two or three phenolic rings of the orcinol or β-orcinol type. To date, about 141 orcinol-type depside compounds are known, but biological activity has been described for less than 10 % of them. This review summarizes the data on the cytotoxic and antitumor effects, as well as the molecular cellular mechanisms of action of the orcinol-type depsides and tridepsides, emphasizing the need for further study of this group of compounds, for most of which the biological activity has not yet been studied.
About the Authors
I. A. ProkopyevRussian Federation
Prokopyev Ilya A., Dr. of Sci. (Biol.), Senior Research Fellow; Senior Research Fellow of the Department of Fundamental Researches
2, Professor Popov str., Saint Petersburg, 197022
70, Leningradskaya str., Saint Petersburg, 197758
Competing Interests:
Authors declare no conflict of interest
U. A. Kremenetskaya
Russian Federation
Kremenetskaya Uliana A., Student of the Faculty of Biology
7-9, Universitetskaya Embankment, Saint Petersburg, 199034
Competing Interests:
Authors declare no conflict of interest
O. S. Shemchuk
Russian Federation
Shemchuk Olga S., Postgraduate Student, Specialist in Educational and Methodological Work of the Department of General and Bioorganic Chemistry; Junior Research Fellow of the Department of Fundamental Researches
70, Leningradskaya str., Saint Petersburg, 197758
6-8, L’va Tolstogo str., Saint Petersburg, 197022
Competing Interests:
Authors declare no conflict of interest
P. K. Kozhukhov
Russian Federation
Kozhukhov Pavel K., Postgraduate Student of the Department of General and Bioorganic Chemistry
6-8, L’va Tolstogo str., Saint Petersburg, 197022
Competing Interests:
Authors declare no conflict of interest
O. E. Molchanov
Russian Federation
Molchanov Oleg E., Dr. of Sci. (Med.), Head of the Department of Basic Research
70, Leningradskaya str., Saint Petersburg, 197758
Competing Interests:
Authors declare no conflict of interest
D. N. Maistrenko
Russian Federation
Maistrenko Dmitrii N., Dr. of Sci. (Med.), Director
70, Leningradskaya str., Saint Petersburg, 197758
Competing Interests:
Authors declare no conflict of interest
K. N. Semenov
Russian Federation
Semenov Konstantin N., Dr. of Sci. (Chem.), Professor of the Department of General and Bioorganic Chemistry; Chief Research Fellow of the Department of Fundamental Researches; Professor of the Department of Solid State Chemistry, Institute of Chemistry
70, Leningradskaya str., Saint Petersburg, 197758
6-8, L’va Tolstogo str., Saint Petersburg, 197022
Competing Interests:
Authors declare no conflict of interest
V. V. Sharoyko
Russian Federation
Sharoyko Vladimir V., Dr. of Sci. (Biol.), Professor of the Department of General and Bioorganic Chemistry; Leading Research Fellow of the Department of Solid State Chemistry, Institute of Chemistry; Leading Research Fellow of the Department of Fundamental Researches
70, Leningradskaya str., Saint Petersburg, 197758
6-8, L’va Tolstogo str., Saint Petersburg, 197022
Competing Interests:
Authors declare no conflict of interest
References
1. Stocker-Wörgötter E. Metabolic diversity of lichenforming ascomycetous fungi: culturing, polyketide and shikimatemetabolite production, and PKS genes // Nat. Prod. ReP. 2008;25(1):188–200.
2. Elix J. A., Stocker-Wörgötter E. Biochemistry and secondary metabolites // Lichen Biology, Second Edition. Cambridge University Press, 2008:104–133.
3. Shukla V., Joshi G. P., Rawat M. S. M. Lichens as a potential natural source of bioactive compounds: A review // Phytochemistry Reviews. 2010;9(2):303–314.
4. Okuyama E., Umeyama K., Yamazaki M. et al. Usnic Acid and Diffractaic Acid as Analgesic and Antipyretic Components of Usnea diffracta // Planta Med. 1995;61(02): 113–115.
5. Ranković B., Kosanić M., Stanojković T. et al. Biological activities of toninia candida and usnea barbata together with their norstictic acid and usnic acid constituents // Int J Mol Sci. 2012;13(11):14707–14722.
6. Liu H., Liu Y., Liu Y. et al. A novel anticancer agent, retigeric acid B, displays proliferation inhibition, S phase arrest and apoptosis activation in human prostate cancer cells // Chem Biol Interact. 2010;188(3):598–606.
7. Galanty A., Koczurkiewicz P., Wnuk D. et al. Usnic acid and atranorin exert selective cytostatic and anti-invasive effects on human prostate and melanoma cancer cells // Toxicology in Vitro. 2017;40:161–169.
8. Melo M. G. D. de, Araújo A. A. de S., Serafini M. R. et al. Anti-inflammatory and toxicity studies of atranorin extracted from Cladina kalbii Ahti in rodents // Brazilian Journal of Pharmaceutical Sciences. 2011;47(4):861–872.
9. Calcott M. J., Ackerley D. F., Knight A. et al. Secondary metabolism in the lichen symbiosis // Chem Soc Rev. 2018;47(5):1730–1760.
10. Elix J. A. A catalogue of standardized chromatographic data and biosynthetic relationships for lichen substances. Canberra, 2014.
11. Ristić S., Ranković B., Kosanić M. et al. Phytochemical study and antioxidant, antimicrobial and anticancer activities of Melanelia subaurifera and Melanelia fuliginosa lichens // J Food Sci Technol. 2016;53(6):2804–2816.
12. Cheng B., Cao S., Vasquez V. et al. Identification of anziaic acid, a lichen depside from hypotrachyna sp., as a new topoisomerase poison inhibitor // PLoS One. 2013; 8(4):e60770.
13. Mohammadi M., Zambare V., Suntres Z., Christopher L. Isolation, characterization, and breast cancer cytotoxic activity of gyrophoric acid from the lichen umbilicaria muhlenbergii // Processes. 2022;10(7):1361.
14. Bačkorová M., Bačkor M., Mikeš J. et al. Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid // Toxicology in Vitro. 2011;25(1):37–44.
15. Kosanic M., Rankovic B., Stanojkovic T. et al. Biological activities and chemical composition of lichens from Serbia // EXCLI J. 2014;13:1226–1238.
16. Correché E. R., Enriz R. D., Piovano M. et al. Cytotoxic and apoptotic effects on hepatocytes of secondary metabolites obtained from lichens // Alternatives to Laboratory Animals. 2004;32(6):605–615.
17. Goga M., Kello M., Vilkova M. et al. Oxidative stress mediated by gyrophoric acid from the lichen Umbilicaria hirsuta affected apoptosis and stress/survival pathways in HeLa cells // BMC Complement Altern Med. 2019;19(1):221.
18. Plsíkova J., Stepankova J., Kasparkova J. et al. Lichen secondary metabolites as DNA-interacting agents // Toxicology in Vitro. 2014;28(2):182–186.
19. Bogo D., Honda N. K., Alcantara G. B. et al. Cytotoxic activity of compounds from lichens of the cerrado biome in brazil // Orbital: The Electronic Journal of Chemistry. 2020;12(1):7–16.
20. Tatipamula V. B., Vedula G. S., Sastry A. V. S. Antarvedisides A-B from manglicolous lichen dirinaria consimilis (stirton) and their pharmacological profile // Asian Journal of Chemistry. Chemical Publishing Co. 2019; 31(4):805–812.
21. Russo A., Caggia S., Piovano M. et al. Effect of vicanicin and protolichesterinic acid on human prostate cancer cells: role of Hsp70 protein // Chem Biol Interact. 2012;195(1):1–10.
22. Brandão L. F., Alcantara G. B., Matos M. de F. C. et al. Cytotoxic evaluation of phenolic compounds from lichens against melanoma cells // Chem Pharm Bull (Tokyo). 2013;61(2):176–183.
23. Oettl S. K., Gerstmeier J., Khan S. Y. et al. Imbricaric acid and perlatolic acid: multi-targeting anti-inflammatory depsides from Cetrelia monachorum // PLoS One. 2013; 8(10):e76929.
24. Emsen B., Turkez H., Togar B., Aslan A. Evaluation of antioxidant and cytotoxic effects of olivetoric and physodic acid in cultured human amnion fibroblasts // Hum Exp Toxicol. 2017;36(4):376–385.
25. Emsen B., Togar B., Turkez H., Aslan A. Effects of two lichen acids isolated from Pseudevernia furfuracea (L.) Zopf in cultured human lymphocytes // Zeitschrift für Naturforschung C. 2018;73(7–8):303–312.
26. Koparal A. T., Ulus G., Zeytinoğlu M. et al. Angiogenesis inhibition by a lichen compound olivetoric acid // Phytotherapy Research. 2010;24(5):754–758.
27. Ivanova V., Bačkor M., Dahse H.-M., Graefe U. molecular structural studies of lichen substances with antimicrobial, antiproliferative, and cytotoxic effects from parmelia subrudecta // Prep Biochem Biotechnol. 2010;40(4):377–388.
28. Roser L. A., Erkoc P., Ingelfinger R. et al. Lecanoric acid mediates anti-proliferative effects by an M phase arrest in colon cancer cells // Biomedicine & Pharmacotherapy. 2022;148:112734.
29. Paluszczak J., Kleszcz R., Studzińska-Sroka E., KrajkaKuźniak V. Lichen-derived caperatic acid and physodic acid inhibit Wnt signaling in colorectal cancer cells // Mol Cell Biochem. 2018;441(1–2):109–124.
30. Kalın Ş. N., Altay A., Budak H. Effect of evernic acid on human breast cancer MCF-7 and MDA-MB-453 cell lines via thioredoxin reductase 1: A molecular approach // Journal of Applied Toxicology. 2023;43(8):1148–1158.
31. Burlando B., Ranzato E., Volante A. et al. Antiproliferative effects on tumour cells and promotion of keratinocyte wound healing by different lichen compounds // Planta Med. 2009;75(6):607–613.
32. Kello M., Goga M., Kotorova K. et al. Screening evaluation of antiproliferative, antimicrobial and antioxidant activity of lichen extracts and secondary metabolites in vitro // Plants. 2023;12(3):611.
33. Russo A., Piovano M., Lombardo L. et al. Lichen metabolites prevent UV light and nitric oxide-mediated plasmid DNA damage and induce apoptosis in human melanoma cells // Life Sci. 2008;83(13–14):468–474.
34. Russo A., Piovano M., Lombardo L. et al. Pannarin inhibits cell growth and induces cell death in human prostate carcinoma DU-145 cells // Anticancer Drugs. 2006; 17(10):1163–1169.
Review
For citations:
Prokopyev I.A., Kremenetskaya U.A., Shemchuk O.S., Kozhukhov P.K., Molchanov O.E., Maistrenko D.N., Semenov K.N., Sharoyko V.V. Cytotoxic and cytostatic activity of orcinol-type depsides of lichens. The Scientific Notes of the Pavlov University. 2024;31(3):26-35. (In Russ.) https://doi.org/10.24884/1607-4181-2024-31-3-26-35