Tolerance to paradoxical increase in motor activity caused by inhibition of phosphodiesterase 10a in a model of hypodopaminergy
https://doi.org/10.24884/1607-4181-2023-30-4-32-42
Abstract
Introduction. Phosphodiesterases (PDEs) are a group of enzymes that hydrolyze the phosphodiester bond in cyclic nucleotides. PDE10A is mainly present in the medium-sized spiny neurons of the striatum. Functionally, PDE10A inhibition imitates the effect of D1-like agonists and D2-like dopamine receptor antagonists, and simultaneously modulating “direct” and “indirect” striato-thalamo-cortical brain pathway. To date, the effects of PDE10A inhibition have been characterized mainly, reproducing the inhibitory motor activity of D2-like dopamine receptor antagonists.
The objective was to evaluate the stimulating motor activity of the effect of PDE10A inhibitors, as well as the possible development of tolerance to these effects when they are re-administered.
Methods and materials. The hypodopaminergic state in male Wistar stock rats was modeled by administration of the VMAT2 inhibitor tetrabenazine (3 mg/kg). The effects of selective inhibitors PDE10A, MP-10 (0.3–5 mg/kg) and RO5545965 (0.1–0.9 mg/kg), on the motor activity of rats were evaluated with single and repeated administration (5 and 10 days).
Results. Switching off PDE10A dose-dependently stimulated the motor activity of rats after administration of tetrabenazine. However, repeated administration of PDE10A inhibitors was accompanied by the development of tolerance to their paradoxical stimulating effect.
Conclusion. The development of tolerance may limit the potential clinical use of PDE10A inhibitors to correct hypodopaminergic symptoms in patients with Parkinson’s disease. It is necessary to study the molecular mechanism of this phenomenon.
About the Authors
A. R. DorotenkoRussian Federation
Dorotenko Artem R., Junior Research Fellow of the Laboratory of Experimental Pharmacology of Addictive States of the Department of Psychopharmacology of the Institute of Pharmacology named after A.V. Valdman
Saint Petersburg
Competing Interests:
Authors declare no conflict of interest
I. M. Sukhanov
Russian Federation
Sukhanov Ilya M., Dr. of Sci. (Med.), Head of the Laboratory of Behavioral Pharmacology of the Department Psychopharmacology of the Institute of Pharmacology named after A.V. Valdman
Saint Petersburg
Competing Interests:
Authors declare no conflict of interest
A. A. Savchenko
Russian Federation
Savchenko Artem A., Senior Laboratory Assistant of Behavioral Pharmacology of the Department of Psychopharmacology of the Institute of Pharmacology named after A.V. Valdman
Saint Petersburg
Competing Interests:
Authors declare no conflict of interest
O. A. Dravolina
Russian Federation
Dravolina Olga A., Cand. of Sci. (Biol.), Head of the Laboratory of Experimental Pharmacology of Addictive States of the Department of Psychopharmacology of the Institute of Pharmacology named after A.V. Valdman
Saint Petersburg
Competing Interests:
Authors declare no conflict of interest
I. V. Belozertseva
Russian Federation
Belozertseva Irina V., Cand. of Sci. (Biol.), Head of the Department of Psychopharmacology of the Institute of Pharmacology named after A.V. Valdman
Saint Petersburg
Competing Interests:
Authors declare no conflict of interest
References
1. Bateup, H.S., Svenningsson, P., Kuroiwa, M., Gong, S., Nishi, A., Heintz, N., Greengard, P., 2008. Cell type-specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs. Nat. Neurosci. 11, 932–939. https://doi.org/10.1038/nn.2153
2. Gerfen, C.R., Surmeier, D.J., 2011. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34, 441–66. https://doi.org/10.1146/annurev-neuro-061010-113641
3. Heiman, M., Schaefer, A., Gong, S., Peterson, J.D., Day, M., Ramsey, K.E., Suárez-Fariñas, M., Schwarz, C., Stephan, D.A., Surmeier, D.J., Greengard, P., Heintz, N., 2008. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–48. https://doi.org/10.1016/j.cell.2008.10.028
4. Tritsch, N.X., Sabatini, B.L., 2012. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76, 33–50. https://doi.org/10.1016/j.neuron.2012.09.023
5. Valjent, E., Bertran-Gonzalez, J., Hervé, D., Fisone, G., Girault, J.A., 2009. Looking BAC at striatal signaling: cell-specific analysis in new transgenic mice. Trends Neurosci. 32, 538–547. https://doi.org/10.1016/j.tins.2009.06.005
6. Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V., Di Filippo, M., 2014. Direct and indirect pathways of basal ganglia: A critical reappraisal. Nat. Neurosci. 17, 1022–1030. https://doi.org/10.1038/nn.3743
7. Cui, G., Jun, S.B., Jin, X., Pham, M.D., Vogel, S.S., Lovinger, D.M., Costa, R.M., 2013. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242. https://doi.org/10.1038/nature11846
8. Friend, D.M., Kravitz, A. V., 2014. Working together: Basal ganglia pathways in action selection. Trends Neurosci. 37, 301–303. https://doi.org/10.1016/j.tins.2014.04.004
9. Jin, X., Tecuapetla, F., Costa, R.M., 2014. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci. 17, 423–430. https://doi.org/10.1038/nn.3632
10. Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma, F.J., Sibley, D.R., 1990. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432. https://doi.org/10.1126/science.2147780
11. Bolger, G.B., 2021. The PDE-Opathies: Diverse Phenotypes Produced by a Functionally Related Multigene Family. Trends Genet. 37, 669–681. https://doi.org/10.1016/j.tig.2021.03.002
12. Baillie, G.S., Tejeda, G.S., Kelly, M.P., 2019. Therapeutic targeting of 3′,5′-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat. Rev. Drug Discov. 18, 770–796. https://doi.org/10.1038/s41573-019-0033-4
13. Coskran, T.M., Morton, D., Menniti, F.S., Adamowicz, W.O., Kleiman, R.J., Ryan, A.M., Strick, C.A., Schmidt, C.J., Stephenson, D.T., 2006. Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. J. Histochem. Cytochem. 54, 1205–1213. https://doi.org/10.1369/jhc.6A6930.2006
14. Kelly, M.P., Adamowicz, W., Bove, S., Hartman, A.J., Mariga, A., Pathak, G., Reinhart, V., Romegialli, A., Kleiman, R.J., 2014. Select 3’,5’-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. Cell. Signal. 26, 383–397. https://doi.org/10.1016/j.cellsig.2013.10.007
15. Lakics, V., Karran, E.H., Boess, F.G., 2010. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology 59, 367–374. https://doi.org/10.1016/j.neuropharm.2010.05.004
16. Seeger, T.F., Bartlett, B., Coskran, T.M., Culp, J.S., James, L.C., Krull, D.L., Lanfear, J., Ryan, A.M., Schmidt, C.J., Strick, C.A., Varghese, A.H., Williams, R.D., Wylie, P.G., Menniti, F.S., 2003. Immunohistochemical localization of PDE10A in the rat brain. Brain Res. 985, 113–126. https://doi.org/10.1016/S0006-8993(03)02754-9
17. Xie, Z., Adamowicz, W.O., Eldred, W.D., Jakowski, A.B., Kleiman, R.J., Morton, D.G., Stephenson, D.T., Strick, C.A., Williams, R.D., Menniti, F.S., 2006. Cellular and subcellular localization of PDE10A, a striatum-enriched phosphodiesterase. Neuroscience 139, 597–607. https://doi.org/10.1016/j.neuroscience.2005.12.042
18. García, A.M., Redondo, M., Martinez, A., Gil, C., 2014. Phosphodiesterase 10 inhibitors: New disease modifying drugs for Parkinson’s disease? Curr. Med. Chem. 21, 1171–1187. https://doi.org/10.2174/0929867321666131228221749
19. DeMartinis, N., Lopez, R.N., Pickering, E.H., Schmidt, C.J., Gertsik, L., Walling, D.P., Ogden, A., 2019. A proof-of-concept study evaluating the phosphodiesterase 10A Inhibitor PF-02545920 in the adjunctive treatment of suboptimally controlled symptoms of schizophrenia. J. Clin. Psychopharmacol. 39, 318–328. https://doi.org/10.1097/JCP.0000000000001047
20. Kehler, J., Nielsen, J., 2011. PDE10A inhibitors: Novel therapeutic drugs for schizophrenia. Curr. Pharm. Des. 17, 137–150. https://doi.org/10.2174/138161211795049624
21. Macek, T.A., McCue, M., Dong, X., Hanson, E., Goldsmith, P., Affinito, J., Mahableshwarkar, A.R., 2019. A phase 2, randomized, placebo-controlled study of the efficacy and safety of TAK-063 in subjects with an acute exacerbation of schizophrenia. Schizophr. Res. 204, 289–294. https://doi.org/10.1016/j.schres.2018.08.028
22. Schmidt, C.J., Chapin, D.S., Cianfrogna, J., Corman, M.L., Hajos, M., Harms, J.F., Hoffman, W.E., Lebel, L.A., McCarthy, S.A., Nelson, F.R., Proulx-LaFrance, C., Majchrzak, M.J., Ramirez, A.D., Schmidt, K., Seymour, P.A., Siuciak, J.A., Tingley, F.D., Williams, R.D., Verhoest, P.R., Menniti, F.S., 2008. Preclinical characterization of selective phosphodiesterase 10A inhibitors: A new therapeutic approach to the treatment of schizophrenia. J. Pharmacol. Exp. Ther. 325, 681–690. https://doi.org/10.1124/jpet.107.132910
23. Siuciak, J.A., Chapin, D.S., Harms, J.F., Lebel, L.A., McCarthy, S.A., Chambers, L., Shrikhande, A., Wong, S., Menniti, F.S., Schmidt, C.J., 2006. Inhibition of the striatum-enriched phosphodiesterase PDE10A: A novel approach to the treatment of psychosis. Neuropharmacology 51, 386–396. https://doi.org/10.1016/j.neuropharm.2006.04.013
24. Megens, A.A.H.P., Hendrickx, H.M.R., Mahieu, M.M.A., Wellens, A.L.Y., de Boer, P., Vanhoof, G., 2014b. PDE10A inhibitors stimulate or suppress motor behavior dependent on the relative activation state of the direct and indirect striatal output pathways. Pharmacol. Res. Perspect. 2, 1–21. https://doi.org/10.1002/prp2.57
25. Sukhanov, I., Dorotenko, A., Fesenko, Z., Savchenko, A., Efimova, E. V., Mor, M.S., Belozertseva, I. V., Sotnikova, T.D., Gainetdinov, R.R., 2022a. Inhibition of PDE10A in a new rat model of severe dopamine depletion suggests new approach to non‐dopamine Parkinson’s disease therapy. Biomolecules 13, 9. https://doi.org/10.3390/biom13010009
26. Arakawa, K., Maehara, S., Yuge, N., Ishikawa, M., Miyazaki, Y., Naba, H., Kato, Y., Nakao, K., 2016. Pharmacological characterization of a novel potent, selective, and orally active phosphodiesterase 10A inhibitor, PDM-042 [(E)-4-(2-(2-(5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)vinyl)-6-(pyrrolidin-1-yl)pyrimidin-4-yl)morpholine] in rats: potential. Pharmacol. Res. Perspect. 4, 1–12. https://doi.org/10.1002/prp2.241
27. Suzuki, K., Harada, A., Suzuki, H., Capuani, C., Ugolini, A., Corsi, M., Kimura, H., 2018. Combined treatment with a selective PDE10A inhibitor TAK-063 and either haloperidol or olanzapine at subeffective doses produces potent antipsychotic-like effects without affecting plasma prolactin levels and cataleptic responses in rodents. Pharmacol. Res. Perspect. 6, e00372. https://doi.org/10.1002/prp2.372
28. Langen, B., Dost, R., Egerland, U., Stange, H., Hoefgen, N., 2012. Effect of PDE10A inhibitors on MK-801-induced immobility in the forced swim test. Psychopharmacology (Berl). 221, 249–259. https://doi.org/10.1007/s00213-011-2567-y
29. Megens, A.A.H.P., Hendrickx, H.M.R., Hens, K.A., Fonteyn, I., Langlois, X., Lenaerts, I., Somers, M.V.F., De Boer, P., Vanhoof, G., 2014a. Pharmacology of JNJ-42314415, a centrally active phosphodiesterase 10A (PDE10A) inhibitor: A comparison of PDE10A inhibitors with D2 receptor blockers as potential antipsychotic drugs. J. Pharmacol. Exp. Ther. 349, 138–154. https://doi.org/10.1124/jpet.113.211904
30. Mango, D., Bonito-Oliva, A., Ledonne, A., Nisticò, R., Castelli, V., Giorgi, M., Sancesario, G., Fisone, G., Berretta, N., Mercuri, N.B., 2014. Phosphodiesterase 10A controls D1-mediated facilitation of GABA release from striato-nigral projections under normal and dopamine-depleted conditions. Neuropharmacology 76, 127–136. https://doi.org/10.1016/j.neuropharm.2013.08.010
31. Threlfell, S., Sammut, S., Menniti, F.S., Schmidt, C.J., West, A.R., 2009. Inhibition of phosphodiesterase 10A increases the responsiveness of striatal projection neurons to cortical stimulation. J. Pharmacol. Exp. Ther. 328, 785–795. https://doi.org/10.1124/jpet.108.146332
32. Lee, S.J., Lodder, B., Chen, Y., Patriarchi, T., Tian, L., Sabatini, B.L. 2021. Cell-Type-Specific Asynchronous Modulation of PKA by Dopamine in Learning. Nature 590, 451–456. https://doi.org/10.1038/s41586-020-03050-5
33. Martel, J.C., Gatti McArthur, S., 2020. Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front. Pharmacol. 11, 1003. https://doi.org/10.3389/fphar.2020.01003
34. Sukhanov, I., Dorotenko, A., Savchenko, A., Dravolina, O.A., 2022b. Tolerance to a paradoxical increase in motor activity induced by PDE10A inhibition under hypodopaminergic conditions [WWW Document]. Authorea. https://doi.org/10.22541/au.166024983.30383141/v1
35. Hornykiewicz, O., 2017. L-DOPA. J. Parkinsons. Dis. 7, S3–S10. https://doi.org/10.3233/JPD-179004
36. Gancher, S.T., Woodward, W.R., Nutt, J.G., 1996. Apomorphine tolerance in Parkinson’s disease: Lack of a dose effect. Clin. Neuropharmacol. 19, 59–64. https://doi.org/10.1097/00002826-199619010-00004
37. Nutt, J.G., Carter, J.H., Woodward, W.R., 1994. Effect of brief levodopa holidays on the short-duration response to levodopa: Evidence for tolerance to the antiparkinsonian effects. Neurology 44, 1617–1617. https://doi.org/10.1212/WNL.44.9.1617
38. Lewis, M.M., Huang, X., Nichols, D.E., Mailman, R.B., 2008. D1 and functionally selective dopamine agonists as neuroprotective agents in Parkinsons disease. CNS Neurol. Disord. - Drug Targets 5, 345–353. https://doi.org/10.2174/187152706777452245
39. Mailman, R., Huang, X., Nichols, D.E., 2001. Parkinson’s disease and D1 dopamine receptors. Curr. Opin. Investig. Drugs 2, 1582–1591
40. Zhang, J., Xiong, B., Zhen, X., Zhang, A., 2009. Dopamine D1 receptor ligands: where are we now and where are we going. Med. Res. Rev. 29, 272–294. https://doi.org/10.1002/med.20130
41. Lewis, M.M. Van Scoy Sol De Jesus, L.J., Hakun, J.G., Eslinger, P.J., Fernandez-Mendoza, J., Yang Yang, L. K., Snyder, B.L., Loktionova, N., Duvvuri, S., Gray, D.L., Huang, X., Mailman, R.B. 2023. Dopamine D1 Agonists: First Potential Treatment for Late-Stage Parkinson’s Disease. Biomolecules. - 13. 829. https://doi.org/10.3390/biom13050829
42. Threlfell, S., West, A.R., 2013. Modulation of striatal neuron activity by cyclic nucleotide signalling and phosphodiesterase inhibition. Basal Ganglia 3, 137–146. https://doi.org/10.1016/j.baga.2013.08.001
43. Hufgard, J.R., Williams, M.T., Skelton, M.R., Grubisha, O., Ferreira, F.M., Sanger, H., Wright, M.E., Reed-Kessler, T.M., Rasmussen, K., Duman, R.S., Vorhees, C. V., 2017. Phosphodiesterase-1b (Pde1b) knockout mice are resistant to forced swim and tail suspension induced immobility and show upregulation of Pde10a. Psychopharmacology (Berl). 234, 1803–1813. https://doi.org/10.1007/s00213-017-4587-8
Review
For citations:
Dorotenko A.R., Sukhanov I.M., Savchenko A.A., Dravolina O.A., Belozertseva I.V. Tolerance to paradoxical increase in motor activity caused by inhibition of phosphodiesterase 10a in a model of hypodopaminergy. The Scientific Notes of the Pavlov University. 2023;30(4):32-42. (In Russ.) https://doi.org/10.24884/1607-4181-2023-30-4-32-42