© Коллектив авторов, 2015 г. УДК 616.858:577.174.52

П. А. Андоскин, А. К. Емельянов, М. А. Николаев, К. А. Сенкевич, В. П. Шилин, А. А. Тимофеева,

А. Ф. Якимовский, С. Н. Пчелина

ВЛИЯНИЕ ДОФАМИНА ПЛАЗ-МЫ НА УРОВЕНЬ АЛЬФА-СИ-НУКЛЕИНА CD45⁺-КЛЕТОК КРОВИ ПРИ БОЛЕЗНИ ПАР-КИНСОНА

Петербургский институт ядерной физики имени Б. П. Константинова; НИЦ «Курчатовский институт»; Первый Санкт-Петербургский государственный медицинский университет имени академика И. П. Павлова; Санкт-Петербургский академический университет — научно-образовательный центр нанотехнологий РАН

ВВЕДЕНИЕ

Болезнь Паркинсона (БП) — нейродегенеративное заболевание, обусловленное гибельюдофаминергических нейронов черной субстанции головного мозга. Центральным звеном патогенеза БП считается нарушение метаболизма (повышение внутриклеточной концентрации, формирование нейротоксичных олигомерных форм) небольшого нейронального белка альфа-синуклеина, локализующегося преимущественно в пресинаптическихтерминалях [4, 13].

В ряде исследований последних лет рассматривалась возможность использования альфа-синуклеина периферических жидкостей (спинно-мозговая жидкость (СМЖ), кровь) в качестве биомаркера развития БП [3]. Полученные данные носят противоречивый характер, что может, в частности, объясняться примесью эритроцитов в исследуемых образцах [12]. Результаты исследований последних лет показывают, что из всех клеток крови эритроциты являются основным источником альфа-синуклеина (более 98 %) [2, 12]. Предполагается, что гемолиз влияет на уровень альфа-синуклеина в плазме и СМЖ. Необходимо отметить, что при оценке возможности использования альфа-синуклеина лимфоцитов крови в качестве маркера БП использовали фракцию мононуклеаров, полученную методом градиентногоцентрифугирования на фиколе, что также не исключает примеси эритроцитов.

Мы предположили, что в качестве биомаркера БП можно рассматривать альфа-синуклеин гомогенной фракции клеток крови, полученной методом магнитного сортинга, а именно — CD45⁺-клеток, экспрессирующих основные белки дофаминергическойнейротрансмиссии и, таким образом, отражающих процессы метаболизма альфа-синуклеинав дофаминергических нейронах.

Для использования уровня альфа-синуклеина CD45⁺-клеток в качестве маркера заболевания представляется также важным выявление факторов, влияющих на оцениваемый параметр. Результаты исследований, проведенных *in vitro* и на модельных животных, предполагают, что изменение уровня дофамина может влиять на уровеньальфасинуклеина и приводить к формированию нейротоксичных агрегатов белка в клетке [6, 9].

В настоящем исследовании мы оценили уровень альфа-синуклеина в $CD45^+$ -клетках крови и уровень дофамина плазмы крови у пациентов с БП, не получавших терапию Λ -ДОФА-содержащими препаратами и в контроле.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

В исследование вошли пациенты с вновь диагностированными случаями БП (N=14, средний возраст — 62.8 ± 9.97 года (от 42 до 80 лет)), не получавшие лечения препаратами Λ -ДОФА, а также обследуемые контрольной группы (N=17; средний возраст — 68.6 года, от 53 до 86 лет) с отсутствием неврологических расстройств. Исследование было одобрено этическим комитетом ПСПбГМУ им. акад. И. П. Павлова и проводилось при информировании пациента и получении его согласия.

Выделение CD45⁺-клеток было проведено методом магнитного сортинга с использованием магнитного ручного сепаратора MACS (*MiltenyiBiotec*, США) и колонок miniMACS типа MS (*MiltenyiBiotec*, США) изнезамороженной периферической крови. Лизис клеток осуществлялсяс использованием набора TotalProteinExtractionKit (*Chemicon* (*Millipore*), США). Измерение общего белка в клеточных лизатах было проведено с использованием набора Pierce BCA ProteinAssaykit (*ThermoScientific*, США). В дальнейших экспериментах были использованы образцы клеточных лизатов, выравненные по концентрации общего белка (по 6 мкг в образце).

Оценка альфа-синуклеина проводилась методом иммуноферментного анализа (ИФА) с использованием набора Humanalpha-synuclein ELISA kit (Invitrogen, США). Исследования каждого образца проводились в трех повторах. Оценку уровня дофамина плазмы крови проводили методом ИФА с набором для исследования дофамина в физиологических жидкостях (DopamineResearchELISAAE 5300, LaborDiagnostikaNordGmbh&Co. KG, США). Оптическую плотность оценивали на планшетном спектрофотометре ELx800.

Статистическая обработка данных была проведена с использованием программы «SPSS» версия 12.0. Соответствие полученных данных нормальному распределению проверялось одновыборочным критерием Шапиро — Уилка. Сравнение полученных значений между отдельными группами предполагало использование непараметрического

критерия Крускала — Уолеса для К-независимых выборок. В случае обнаружения статистически значимых различий проводилось последующее попарное сравнение вариационных рядов исследуемых групп с использованием непараметрического критерия Манна — Уитни для двух независимых выборок. Корреляции между вариационными рядами оценивали с использованием коэффициента корреляции Спирмана (г). Значения р<0,05 считались статистически значимыми.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Нами был оценен уровень альфа-синуклеина ${\rm CD45^+}$ -клеток крови и уровень дофамина плазмы кровиу пациентов с БП и в контрольной группе. Статистически значимых различий в уровнях дофамина между группами выявлено не было (пациенты с БП: медиана: 139,54 (мин. -0,2; макс. -363,16) пг/мл, контроль: медиана -45,56 (мин. -0,02; макс. -219,8 пг/мл).

В то же время уровень общего альфа-синуклеина в CD45 $^+$ -клетках был выше у пациентов с БП (N = 14, медиана: 9,59 (мин. — 2,23; макс. — 36,80) нг/мл) по сравнению с контролем(N = 17, медиана — 4,81 (мин. — 1,21; макс. — 28,10) нг/мл) (p = 0,04) (рис. 1).

Корреляцию уровня дофамина плазмы крови и уровня общего альфа-синуклеина $CD45^+$ -клеток оценивали в группе пациентов с БП (N=13) и контрольной группе (N=13). Нами выявлена прямая корреляция уровня дофамина плазмы крови и уровня общего альфа-синуклеина $CD45^+$ -клеток крови в контрольной группе (r=0,71; p=0,007) (рис. 2,a). При этом данная корреляция отсутствовала у пациентов с БП (рис. $2,\delta$).

Нами впервые проведена оценка уровня альфасинуклеина в однородной фракции CD45⁺-клеток крови. Данный объект исследования (мононуклеары крови) выбран как наиболее доступные клетки человека, в которых реализуются процессы синтеза дофамина, альфа-синуклеина, и на их мембране представлены рецепторы дофамина и дофаминовый транспортер [5], что позволяет предположить возможность влияния дофамина на внутриклеточные процессы. Применение в исследовании клеточного сортинга позволило избежать возможной примеси эритроцитов в клеточном лизате, что представляется важным, поскольку концентрация альфа-синуклеина в эритроцитах значительно превышает его содержание в мононуклеарах. Выявленное повышение уровня альфа-синуклеина в $CD45^+$ -клетках у пациентов, не принимающих Λ -ДОФА-содержащие препараты на ранних стадиях развития БП (I — II по Хен и Яру), позволяет рассматривать возможность использования оценки уровня альфа-синуклеина в CD45⁺-клетках в качестве потенциального маркера развития БП. В настоящее

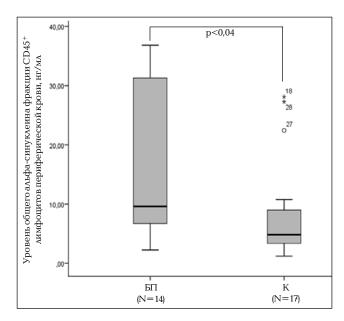


Рис. 1. Уровеньальфа-синуклеинав CD45⁺-клетках периферической крови в группе пациентов с БП и в контрольной группе (К). Результаты представлены в виде ящичных диаграмм с указанием медианы, 25 – 75 %-х квартилей, минимальных и максимальных значений

время предполагается, что маркером развития БП может служить уровень олигомерных форм альфасинуклеина в СМЖ [3].Следует отметить, что забор СМЖ-жидкости является инвазивной процедурой, проведение которой не всегда возможно. В этой связи исследование биомаркераБП в клетках крови представляется более перспективным при проведении скрининговых исследований.

Анализ уровня дофамина в плазме крови и уровня альфа-синуклеина в CD45⁺-клетках крови показал положительную корреляцию в контрольной группе. Следует отметить, что ранее в исследованиях *invitro*было показано, что степень метилирования регуляторных областей гена альфа-синуклеина (SNCA) снижается при воздействии дофамина, приводя к увеличению экспрессии гена [10], что может объяснять механизм влияния дофамина на уровень альфа-синуклеина путем повышения экспрессии гена SNCA. С другой стороны, увеличение концентрации дофамина может приводить к появлению модифицированных форм альфасинуклеина, что может усиливать агрегацию белка и нарушать его деградацию в клетке [1, 7].

Следует отметить, что ранее у пациентов с БП было продемонстрировано увеличение концентрации дофамина в периферических лимфоцитах и тромбоцитах крови при пероральном введении препаратов Λ -ДОФА [8, 11]. В настоящее исследование были включены пациенты с БП, не принимавшие препараты Λ -ДОФА. Отсутствие корреляции уровня дофамина плазмы с уровнем альфа-синуклеина CD45+-клеток крови у пациентов с БП

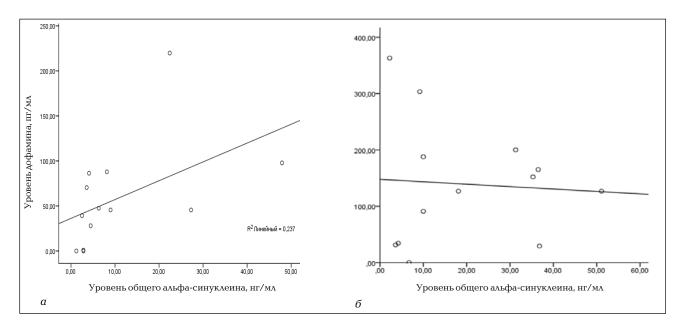


Рис. 2. Корреляция уровня дофамина плазмы крови с уровнем общего альфа-синуклеина в CD45+-клетках: a- в контроле (N = 13; r = 0,71; p = 0,007); $\sigma-$ у пациентов с БП (N = 13, r = - 0,049; p = 0,880)

может свидетельствовать о нарушении обменных механизмов дофамина и/или альфа-синуклеина при развитии заболевания.

Нами впервые показано повышение уровня альфа-синуклеина в CD45⁺-клетках крови у пациентов с БП по сравнению с лицами с отсутствием неврологических заболеваний. Также впервые была выявлена положительная корреляция уровня дофамина с уровнем альфа-синуклеина у человека, что подтверждает полученные ранее с использованием клеточных культур и экспериментальных животных данные о возможном влиянии дофамина на внутриклеточный уровень альфа-синуклеина.

Таким образом, проведенные исследования позволяют предположить, что уровень альфа-синуклеина CD45⁺-клеток крови может быть рассмотрен в качестве биомаркера развития БП.

ЛИТЕРАТУРА

- 1. Anderson J., Walker D. E., Goldstein J. M. et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease // J. Biol. Chem. -2006. $-N_{\rm P}$ 281. -P. 29739 -29752.
- 2. Barbour R., Kling K., Anderson J. P. et al. Red blood cells are the major source of alpha-synuclein in blood // Neurodegener. Dis. -2008. $-N_{\odot}$ 5. -P. 55-59.
- 3. Chahine L. M., Stern M. B., Chen-Plotkin A. Blood-based biomarkers for Parkinson's disease // Parkinsonism Relat. Disord. 2014. N° 20. P. S99—S103.
- 4. Cookson M. R., van der Brug M. Cell systems and the toxic mechanism(s) of alpha-synuclein // Exp. Neurol. -2008. No. 209. P. 5-11.

- 6. Feany M. B., Bender W. W. A drosophila model of Parkinson's disease // Nature. -2000.-N 200.-N 200.-N 200.-N
- 7. Fujiwara H., Hasegawa M., Dohmae N. et al. Alpha-Synucle in isphosphory lated in synucle inopathylesions // Nat. Cell. Biol. -2002. -N 4(2). -P. 160-164.
- 8. Martignoni et al. Peripheral markers of oxidative stress in Parkinson's disease. The role of L-DOPA // Free Rad. Biol. & Med. 1999. No 27. P. 428 437.
- 9. Masliah E., Rockenstein E., Veinbergs I. et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders // Science. $-2000.-\ N{\tiny 2}\ 287.-P.\ 1265-1269.$
- 10. Matsumoto L., Takuma H., Tamaoka A. et al. CpGdemethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson's disease // Plos. ONE. $-2010.-N_{\odot} 5.-P.~e15522.$
- 11. Rajda C. et al. Increased dopamine content in lymphocytes from high-dose L-Dopa-treated Parkinson's disease patients // Neuroimmunomodulation. -2005. -N 12 (2). -P. 81 -84
- 12. Shi M., Zabetian C. P., Hancock A. M. et al. Significance and confouders of peripheral DJ-1 and alpha-synuclein in Parkinson's disease // Neurosci. Lett. -2010. -N 480. -P. 78-82.
- 13. *Yasuda T., Nakata Y., Mochizuki H.* 6-Synuclein and neuronal cell death // Mol. Neurobiol. -2013. $-N ext{0}$ 47. -P. 466 -483.

РЕЗЮМЕ

П.А.Андоскин, А.К.Емельянов, М.А.Николаев, К.А.Сенкевич, В.П.Шилин, А.А.Тимофеева, А.Ф.Якимовский, С.Н.Пчелина

Влияние дофамина плазмы на уровень альфа-синуклеина CD45*-клеток крови при болезни Паркинсона

Болезнь Паркинсона (БП) — распространенное нейродегенеративное заболевание. Центральным звеном патогенеза БП считается нарушение метаболизма белка альфасинуклеина. В ряде исследований последних лет рассматривалась возможность использования альфа-синуклеина периферических жидкостей в качестве биомаркера развития БП, однако предполагается, что гемолиз влияет на уровень альфа-синуклеина в плазме и СМЖ. С целью исключе-

ния фактора контаминации лимфоцитарной фракции эритроцитами нами был предложен алгоритм, основанный на измерении уровня альфа-синуклеина в однородной фракции CD45+-клеток крови. Для проведения исследования была сформирована группа пациентов с БП (N=14) и не имеющая неврологических расстройств контрольная группа (N=17). В ходе исследования было выявлено повышение уровня общего альфа-синуклеинаCD45+-клеток крови в группе пациентов с БП по сравнению с контролем (p=0,04), а также выявлена прямая корреляция уровня дофамина плазмы крови и уровня общего альфа-синуклеинаCD45+-клеток в контрольной группе (r=0,71, p=0,007). Можно предположить, что уровень альфа-синуклеинаCD45+-клеток крови может быть рассмотрен в качестве биомаркера развития БП.

Ключевые слова: болезнь Паркинсона, альфа-синуклеин, дофамин, CD45 + клетки, биомаркер.

SUMMARY

P. A. Andoskin, A. K. Emelyanov, M. A. Nikolaev, K. A. Senkevich, V. P. Shilin, A. F. Yakimovskiy, A. A. Timofeeva, S. N. Pchelina

Parkinson's disease (PD) is the most common neurodegenerative disease

Metabolic impairment of alpha-synuclein protein is considered to be the central event in PDpathogenesis. Recent studies explored usage of alpha-synuclein in peripheral fluids as a biomarker of PD, however alpha-synuclein level in the CSF and plasma is considered to be affected by hemolysis. In order to avoid contamination of a lymphocyte fraction by erythrocytes, we have proposed an algorithm based on measurements of alphasynuclein levels in the homogeneous CD45⁺ cell blood fraction. For this study we formed a group of PD patients (N = 14) and a control group without the neurological disorders (N = 17). We found an increase in the level of the total alpha-synuclein in $CD45^+$ cells of PD patients compared to controls (p = 0,04), and revealed a direct correlation between the level of dopamine in plasma and level of total alpha-synuclein in CD45⁺ cells in the control group (r = 0.71, p = 0.007). The level of alpha-synuclein in CD45⁺ cells could be suggested as possible PD biomarker.

 $\begin{tabular}{ll} \textbf{Keywords:} \ Parkinson's \ disease; alpha-synuclein; \ dopamine; \ CD45^+ \ cells; biomarker. \end{tabular}$

© Коллектив авторов, 2015 г. УДК 616-056.257:616.12

О.В.Листопад, Е.А.Баженова, В.А.Ионин, О.Д.Беляева, Е.И.Баранова

АПЕЛИН И РЕМОДЕЛИРОВА-НИЕ СЕРДЦА У БОЛЬНЫХ АБ-ДОМИНАЛЬНЫМ ОЖИРЕНИЕМ

Первый Санкт-Петербургский государственный медицинский университет имени академика И. П. Павлова; Северо-Западный Федеральный медицинский исследовательский центр, Санкт-Петербург

ВВЕДЕНИЕ

Распространенность ожирения во всем мире в последние десятилетия увеличивается. Установлено, что ожирение является независимым фактором риска развития сердечно-сосудистых заболеваний, которые являются одной из основных причин смертности населения [9, 17].

Одним из механизмов, определяющих развитие сердечно-сосудистых осложнений при ожирении, является ремоделирование сердечно-сосудистой системы. Многочисленные исследования показали, что при ожирении возникают структурные и функциональные изменения сердца. Доказано, что ожирение приводит к развитию гипертрофии левого желудочка [2, 4], увеличению размеров левого желудочка и левого предсердия [7], нарушению диастолической функции левого желудочка [8]. При морбидном ожирении нарушается систо-

лическая функция левого желудочка, что приводит к развитию сердечной недостаточности [5].

Известно, что жировая ткань секретирует множество медиаторов, называемых адипоцитокинами [12]. Проведен ряд исследований, в которых изучалось влияние различных адипоцитокинов на структурные и функциональные параметры сердца. В частности, опубликованы результаты таких исследований с адипонектином, лептином, резистином [11, 13]. Одним из недостаточно изученных адипоцитокинов является апелин. Проведенные исследования продемонстрировали наличие у апелина кардиопротективных свойств. Установлено, что уровень циркулирующего апелина снижен у больных со стабильной стенокардией и хронической сердечной недостаточностью [10]. В экспериментальных исследованиях выявлено уменьшение реперфузионного повреждения миокарда при внутривенной инфузии апелина [14], а также улучшение сократительной способности миокарда [3, 6]. Однако связь уровня апелина с ремоделированием сердца у больных ожирением остается неизученной.

Цель исследования — изучить уровень апелина в плазме крови и его связь со структурно-функциональными параметрами сердца у больных абдоминальным ожирением (AO).

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

Обследованы 93 пациента с абдоминальным ожирением (IDF, 2005) и 21 человек с нормальной окружностью талии.

У всех пациентов измеряли антропометрические показатели, определяли уровень апелина в плазме